查找 Numpy 数组中多个值的行索引
问题:
我们给定一个 NumPy 数组 X 和一组值 searched_values。目标是确定 X 中与 searched_values 中的每个值相对应的行索引。
例如,对于以下输入数组:
X = np.array([[4, 2], [9, 3], [8, 5], [3, 3], [5, 6]]) searched_values = np.array([[4, 2], [3, 3], [5, 6]])
所需的输出应该是:
[0, 3, 4]
方法#1:NumPy广播
此方法利用 NumPy 广播在 X 与每行 searched_values 之间执行逐元素比较:
np.where((X == searched_values[:, None]).all(-1))[1]
方法 #2:使用 np 进行内存高效转换.in1d
为了节省内存,我们可以转换每一行将 X 和 searched_values 转换为线性索引等价物,然后应用 np.in1d 进行交集:
dims = X.max(0) + 1 out = np.where(np.in1d(np.ravel_multi_index(X.T, dims), np.ravel_multi_index(searched_values.T, dims)))[0]
方法#3:使用 np.searchsorted
另一种内存高效转换使用 np.searchsorted 的内存高效方法和线性索引的相同原理转换:
dims = X.max(0) + 1 X1D = np.ravel_multi_index(X.T, dims) searched_valuesID = np.ravel_multi_index(searched_values.T, dims) sidx = X1D.argsort() out = sidx[np.searchsorted(X1D, searched_valuesID, sorter=sidx)]
理解 np.ravel_multi_index
np.ravel_multi_index 将 X 的每一行转换为唯一的线性索引等价物。它对 n 维索引的 2D 数组以及这些索引要映射到的 n 维网格的形状进行操作。
例如,在我们的示例中,X 的每一行代表一个索引元组对于尺寸变暗的 2D 网格。 np.ravel_multi_index 将每个元组映射到唯一的线性索引。
以上是如何在 NumPy 数组中查找多个值的行索引?的详细内容。更多信息请关注PHP中文网其他相关文章!

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版
SublimeText3 Linux最新版

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。