将 Pandas DataFrame 转换为字典
要将 Pandas DataFrame 转换为字典,请使用 to_dict() 方法。默认情况下,此方法使用 DataFrame 的列名作为字典键,并为每列创建一个索引:数据对的字典。
df.to_dict()
自定义字典输出
获取以下列表每列的值而不是索引:数据对的字典,请使用 orient 参数。以下是可用的方向:
- dict:默认方向(列名称作为键,索引:数据对作为值)
- 列表:键是列名,值是列列表data
- series:键是列名称,值是包含数据的 Series 对象
- split:将列/数据/索引拆分为单独的键
- 记录:每一行成为一个字典,以列名作为键和数据值作为值
- 索引:与“记录”类似,但键是索引标签而不是列表
示例
考虑以下内容DataFrame:
df = pd.DataFrame({'ID': ['p', 'q', 'r'], 'A': [1, 4, 4], 'B': [3, 3, 0], 'C': [2, 2, 9]})
将此 DataFrame 转换为“ID”为的字典键和其他列的值作为列表,使用以下代码:
df.set_index('ID').T.to_dict('list')
这将返回以下字典:
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}
其他方向
这里是不同的例子方向:
dict:
df.to_dict('dict')
输出:
{'ID': {'p': 'p', 'q': 'q', 'r': 'r'}, 'A': {0: 1, 1: 4, 2: 4}, 'B': {0: 3, 1: 3, 2: 0}, 'C': {0: 2, 1: 2, 2: 9}}
l ist:
df.to_dict('list')
输出:
{'ID': ['p', 'q', 'r'], 'A': [1, 4, 4], 'B': [3, 3, 0], 'C': [2, 2, 9]}
系列:
df.to_dict('series')
输出:
{'ID': 0 p 1 q 2 r Name: ID, dtype: object, 'A': 0 1 1 4 2 4 Name: A, dtype: int64, 'B': 0 3 1 3 2 0 Name: B, dtype: int64, 'C': 0 2 1 2 2 9 Name: C, dtype: int64}
分割:
df.to_dict('split')
输出:
{'columns': ['ID', 'A', 'B', 'C'], 'data': [['p', 1, 3, 2], ['q', 4, 3, 2], ['r', 4, 0, 9]], 'index': [0, 1, 2]}
记录 :
df.to_dict('records')
输出:
[{'ID': 'p', 'A': 1, 'B': 3, 'C': 2}, {'ID': 'q', 'A': 4, 'B': 3, 'C': 2}, {'ID': 'r', 'A': 4, 'B': 0, 'C': 9}]
索引:
df.to_dict('index')
输出:
{0: {'ID': 'p', 'A': 1, 'B': 3, 'C': 2}, 1: {'ID': 'q', 'A': 4, 'B': 3, 'C': 2}, 2: {'ID': 'r', 'A': 4, 'B': 0, 'C': 9}}
以上是如何将 Pandas DataFrame 转换为不同方向的字典?的详细内容。更多信息请关注PHP中文网其他相关文章!

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

文章讨论了虚拟环境在Python中的作用,重点是管理项目依赖性并避免冲突。它详细介绍了他们在改善项目管理和减少依赖问题方面的创建,激活和利益。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

WebStorm Mac版
好用的JavaScript开发工具

Atom编辑器mac版下载
最流行的的开源编辑器