使用 Pandas 进行高性能交叉连接 (CROSS JOIN)
在这篇文章中,我们探索执行笛卡尔积 (CROSS JOIN) 的最有效方法Pandas 中的 JOIN) 操作。
基线方法:临时键列
典型的方法包括为两个 DataFrame 分配一个临时键列,对该键执行多对多连接,然后删除该键列:
left = pd.DataFrame({'col1' : ['A', 'B', 'C'], 'col2' : [1, 2, 3]}) right = pd.DataFrame({'col1' : ['X', 'Y', 'Z'], 'col2' : [20, 30, 50]}) def cartesian_product_basic(left, right): return ( left.assign(key=1).merge(right.assign(key=1), on='key').drop('key', 1)) cartesian_product_basic(left, right)
基于 NumPy 的实现
提高更大的性能数据集,我们利用 NumPy 的笛卡尔积实现:
import numpy as np def cartesian_product(*arrays): la = len(arrays) dtype = np.result_type(*arrays) arr = np.empty([len(a) for a in arrays] + [la], dtype=dtype) for i, a in enumerate(np.ix_(*arrays)): arr[...,i] = a return arr.reshape(-1, la)
泛化到非唯一索引数据帧
我们可以扩展这种方法来处理非唯一索引数据帧唯一索引:
def cartesian_product_generalized(left, right): la, lb = len(left), len(right) idx = cartesian_product(np.ogrid[:la], np.ogrid[:lb]) return pd.DataFrame( np.column_stack([left.values[idx[:,0]], right.values[idx[:,1]]]))
简化实施对于两个 DataFrames
仅处理两个 DataFrame 时,利用 np.broadcast_arrays 的更简单技术可以实现相当的性能:
def cartesian_product_simplified(left, right): la, lb = len(left), len(right) ia2, ib2 = np.broadcast_arrays(*np.ogrid[:la,:lb]) return pd.DataFrame( np.column_stack([left.values[ia2.ravel()], right.values[ib2.ravel()]]))
性能比较
对这些方法进行基准测试表明,基于 NumPy 的实现提供了最快的性能,特别是对于较大的数据集:
[性能比较图图像]
进一步阅读
要深入了解 Pandas 合并操作,请探索以下内容主题:
- [合并基础知识](https://pbpython.com/pandas-merging-101-cheat-sheet.html)
- [基于索引的连接](https://pbpython.com/pandas-merging-101- join-indexes.html)
- [推广到多个数据帧](https://pbpython.com/pandas-merging-on-multiple-dataframes.html)
以上是如何在 Pandas 中高效地执行 CROSS JOIN?的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器