人们对 OpenAI、Gemini、Claude 等流行的法学硕士存在隐私问题。除非它是开源模型,否则我们真的不知道屏幕后面发生了什么。所以,我们必须要小心。
第一件事是处理我们传递给法学硕士的信息。专家建议避免在提示中包含机密信息或个人标识符。听起来更容易,但随着法学硕士上下文大小的增加,我们可以将大文本传递给模型。因此,它可能会变得严格审查并掩盖所有标识符。
因此,我尝试创建 python 脚本来检测和屏蔽标识符和机密信息。正则表达式很神奇,可以识别不同的机密信息并用掩码替换它。还使用 spacy 库来检测常见标识符,例如名称、地点等,
注意:目前,这适用于印度语境,但仍然可以检测到通用标识符。
那么让我们看看实现(我已经在LLM的帮助下实现了)
如果你想跳过解释。
这是代码库的链接:aditykris/prompt-masker-Indian-context
导入必要的模块/库
import re from typing import Dict, List, Tuple import spacy nlp = spacy.load("en_core_web_sm")
您必须使用以下代码段手动安装“en_core_web_sm”
python -m spacy download en_core_web_sm
设置印度共同机密信息。
class IndianIdentifier: '''Regex for common Indian identifiers''' PAN = r'[A-Z]{5}[0-9]{4}[A-Z]{1}' AADHAR = r'[2-9]{1}[0-9]{3}\s[0-9]{4}\s[0-9]{4}' INDIAN_PASSPORT = r'[A-PR-WYa-pr-wy][1-9]\d\s?\d{4}[1-9]' DRIVING_LICENSE = r'(([A-Z]{2}[0-9]{2})( )|([A-Z]{2}-[0-9]{2}))((19|20)[0-9][0-9])[0-9]{7}' UPI_ID = r'[\.\-a-z0-9]+@[a-z]+' INDIAN_BANK_ACCOUNT = r'\d{9,18}' IFSC_CODE = r'[A-Z]{4}0[A-Z0-9]{6}' INDIAN_PHONE_NUMBER = r'(\+91|\+91\-|0)?[789]\d{9}' EMAIL = r'[\w\.-]+@[\w\.-]+\.\w+' @classmethod def get_all_patterns(cls) -> Dict[str, str]: """Returns all regex patterns defined in the class""" return { name: pattern for name, pattern in vars(cls).items() if isinstance(pattern, str) and not name.startswith('_') }
所以,我正在修改 python 类和方法,因此在这里实现它。
我从 DebugPointer 中找到了这些标识符的正则表达式,非常有帮助。
现在介绍检测功能。简单的 re.finditer() 用于循环不同的模式以查找匹配项。匹配项存储在列表中。
def find_matches(text: str, pattern: str) -> List[Tuple[int, int, str]]: """ Find all matches of a pattern in text and return their positions and matched text """ matches = [] for match in re.finditer(pattern, text): matches.append((match.start(), match.end(), match.group())) return matches
使用简单的字典来存储替换文本。将其包装在一个函数中以返回替换文本。
def get_replacement_text(identifier_type: str) -> str: """ Returns appropriate replacement text based on the type of identifier """ replacements = { 'PAN': '[PAN_NUMBER]', 'AADHAR': '[AADHAR_NUMBER]', 'INDIAN_PASSPORT': '[PASSPORT_NUMBER]', 'DRIVING_LICENSE': '[DL_NUMBER]', 'UPI_ID': '[UPI_ID]', 'INDIAN_BANK_ACCOUNT': '[BANK_ACCOUNT]', 'IFSC_CODE': '[IFSC_CODE]', 'INDIAN_PHONE_NUMBER': '[PHONE_NUMBER]', 'EMAIL': '[EMAIL_ADDRESS]', 'PERSON': '[PERSON_NAME]', 'ORG': '[ORGANIZATION]', 'GPE': '[LOCATION]' } return replacements.get(identifier_type, '[MASKED]')
啊!主要部分开始。
def analyze_identifiers(text: str) -> Tuple[str, Dict[str, List[str]]]: """ Function to identify and hide sensitive information. Returns: - masked_text: Text with all sensitive information masked - found_identifiers: Dictionary containing all identified sensitive information """ # Initialize variables masked_text = text found_identifiers = {} positions_to_mask = [] # First, find all regex matches for identifier_name, pattern in IndianIdentifier.get_all_patterns().items(): matches = find_matches(text, pattern) if matches: found_identifiers[identifier_name] = [match[2] for match in matches] positions_to_mask.extend( (start, end, identifier_name) for start, end, _ in matches ) # Then, process named entities using spaCy doc = nlp(text) for ent in doc.ents: if ent.label_ in ["PERSON", "ORG", "GPE"]: positions_to_mask.append((ent.start_char, ent.end_char, ent.label_)) if ent.label_ not in found_identifiers: found_identifiers[ent.label_] = [] found_identifiers[ent.label_].append(ent.text) # Sort positions by start index in reverse order to handle overlapping matches positions_to_mask.sort(key=lambda x: x[0], reverse=True) # Apply masking for start, end, identifier_type in positions_to_mask: replacement = get_replacement_text(identifier_type) masked_text = masked_text[:start] + replacement + masked_text[end:] return masked_text, found_identifiers
此函数将提示作为输入,并将屏蔽的提示与识别的元素一起作为字典返回。
让我一一解释一下。
以下循环通过不同标识符的正则表达式来查找提示中的匹配项。如果找到,那么它将:
1. 将识别的信息存储在字典中,以标识符类型作为键来跟踪。
2. 记下位置并将其存储在positions_to_mask中,以便我们稍后可以应用遮罩。
import re from typing import Dict, List, Tuple import spacy nlp = spacy.load("en_core_web_sm")
现在是空闲时间。它是一个很棒的自然语言处理 (nlp) 任务库。我们可以使用 nlp 模块从文本中提取标识符。
目前,我已经习惯了它检测姓名、组织和位置。
这与上面的循环相同,用于识别和存储位置。
class IndianIdentifier: '''Regex for common Indian identifiers''' PAN = r'[A-Z]{5}[0-9]{4}[A-Z]{1}' AADHAR = r'[2-9]{1}[0-9]{3}\s[0-9]{4}\s[0-9]{4}' INDIAN_PASSPORT = r'[A-PR-WYa-pr-wy][1-9]\d\s?\d{4}[1-9]' DRIVING_LICENSE = r'(([A-Z]{2}[0-9]{2})( )|([A-Z]{2}-[0-9]{2}))((19|20)[0-9][0-9])[0-9]{7}' UPI_ID = r'[\.\-a-z0-9]+@[a-z]+' INDIAN_BANK_ACCOUNT = r'\d{9,18}' IFSC_CODE = r'[A-Z]{4}0[A-Z0-9]{6}' INDIAN_PHONE_NUMBER = r'(\+91|\+91\-|0)?[789]\d{9}' EMAIL = r'[\w\.-]+@[\w\.-]+\.\w+' @classmethod def get_all_patterns(cls) -> Dict[str, str]: """Returns all regex patterns defined in the class""" return { name: pattern for name, pattern in vars(cls).items() if isinstance(pattern, str) and not name.startswith('_') }
在一些测试用例中,我注意到一些掩码丢失了,这主要是由于标识符重叠造成的。所以,逆序排序有助于解决这个问题。
def find_matches(text: str, pattern: str) -> List[Tuple[int, int, str]]: """ Find all matches of a pattern in text and return their positions and matched text """ matches = [] for match in re.finditer(pattern, text): matches.append((match.start(), match.end(), match.group())) return matches
最后,我们使用来自found_identifiers和positions_to_mask的数据来屏蔽发生。
def get_replacement_text(identifier_type: str) -> str: """ Returns appropriate replacement text based on the type of identifier """ replacements = { 'PAN': '[PAN_NUMBER]', 'AADHAR': '[AADHAR_NUMBER]', 'INDIAN_PASSPORT': '[PASSPORT_NUMBER]', 'DRIVING_LICENSE': '[DL_NUMBER]', 'UPI_ID': '[UPI_ID]', 'INDIAN_BANK_ACCOUNT': '[BANK_ACCOUNT]', 'IFSC_CODE': '[IFSC_CODE]', 'INDIAN_PHONE_NUMBER': '[PHONE_NUMBER]', 'EMAIL': '[EMAIL_ADDRESS]', 'PERSON': '[PERSON_NAME]', 'ORG': '[ORGANIZATION]', 'GPE': '[LOCATION]' } return replacements.get(identifier_type, '[MASKED]')
该程序的示例输入为:
输入:
def analyze_identifiers(text: str) -> Tuple[str, Dict[str, List[str]]]: """ Function to identify and hide sensitive information. Returns: - masked_text: Text with all sensitive information masked - found_identifiers: Dictionary containing all identified sensitive information """ # Initialize variables masked_text = text found_identifiers = {} positions_to_mask = [] # First, find all regex matches for identifier_name, pattern in IndianIdentifier.get_all_patterns().items(): matches = find_matches(text, pattern) if matches: found_identifiers[identifier_name] = [match[2] for match in matches] positions_to_mask.extend( (start, end, identifier_name) for start, end, _ in matches ) # Then, process named entities using spaCy doc = nlp(text) for ent in doc.ents: if ent.label_ in ["PERSON", "ORG", "GPE"]: positions_to_mask.append((ent.start_char, ent.end_char, ent.label_)) if ent.label_ not in found_identifiers: found_identifiers[ent.label_] = [] found_identifiers[ent.label_].append(ent.text) # Sort positions by start index in reverse order to handle overlapping matches positions_to_mask.sort(key=lambda x: x[0], reverse=True) # Apply masking for start, end, identifier_type in positions_to_mask: replacement = get_replacement_text(identifier_type) masked_text = masked_text[:start] + replacement + masked_text[end:] return masked_text, found_identifiers
输出:
蒙版文本:
for identifier_name, pattern in IndianIdentifier.get_all_patterns().items(): matches = find_matches(text, pattern) if matches: found_identifiers[identifier_name] = [match[2] for match in matches] positions_to_mask.extend( (start, end, identifier_name) for start, end, _ in matches )
以上是使用 Regex 和 spaCy 屏蔽提示中的机密数据的详细内容。更多信息请关注PHP中文网其他相关文章!