使用基于范围的 For 循环进行索引提取
在 C 编程中,基于范围的 for 循环提供了一种迭代元素的简洁方法一个容器的。然而,有时需要在迭代过程中确定当前元素的索引,而不依赖于额外的迭代器。
问题:
给定一个值向量和基于范围的 for 循环如下所示:
vector<int> list; for(auto& elem:list) { int i = elem; }</int>
有没有办法找到向量中 elem 的位置而不需要维护一个单独的迭代器?
解决方案:
是的,可以在迭代基于范围的 for 循环时提取索引。此技术涉及模板化结构和迭代器的组合:
template <typename t> struct iterator_extractor { typedef typename T::iterator type; }; template <typename t> struct iterator_extractor<t const> { typedef typename T::const_iterator type; }; template <typename t> class Indexer { public: class iterator { typedef typename iterator_extractor<t>::type inner_iterator; typedef typename std::iterator_traits<inner_iterator>::reference inner_reference; public: typedef std::pair<size_t inner_reference> reference; iterator(inner_iterator it): _pos(0), _it(it) {} reference operator*() const { return reference(_pos, *_it); } iterator& operator++() { ++_pos; ++_it; return *this; } iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } bool operator==(iterator const& it) const { return _it == it._it; } bool operator!=(iterator const& it) const { return !(*this == it); } private: size_t _pos; inner_iterator _it; }; Indexer(T& t): _container(t) {} iterator begin() const { return iterator(_container.begin()); } iterator end() const { return iterator(_container.end()); } private: T& _container; }; // class Indexer template <typename t> Indexer<t> index(T& t) { return Indexer<t>(t); }</t></t></typename></size_t></inner_iterator></t></typename></t></typename></typename>
此代码片段提供了在同时捕获索引和值的同时迭代容器的能力。 Indexer 类包装容器并提供一个自定义迭代器,该迭代器生成索引和元素引用对。
用法示例:
要在范围内使用 Indexer 类 -基于 for 循环,您可以执行以下操作:
#include <iostream> #include <limits> #include <vector> int main() { std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9}; for (auto p: index(v)) { std::cout <p>在此示例中,循环将打印向量的每个元素及其索引:</p> <pre class="brush:php;toolbar:false">0: 1 1: 2 2: 3 3: 4 4: 5 5: 6 6: 7 7: 8 8: 9
以上是如何在 C 中使用基于范围的 for 循环迭代向量时获取元素的索引?的详细内容。更多信息请关注PHP中文网其他相关文章!

C 没有死,反而在许多关键领域蓬勃发展:1)游戏开发,2)系统编程,3)高性能计算,4)浏览器和网络应用,C 依然是主流选择,展现了其强大的生命力和应用场景。

C#和C 的主要区别在于语法、内存管理和性能:1)C#语法现代,支持lambda和LINQ,C 保留C特性并支持模板。2)C#自动内存管理,C 需要手动管理。3)C 性能优于C#,但C#性能也在优化中。

在C 中处理XML数据可以使用TinyXML、Pugixml或libxml2库。1)解析XML文件:使用DOM或SAX方法,DOM适合小文件,SAX适合大文件。2)生成XML文件:将数据结构转换为XML格式并写入文件。通过这些步骤,可以有效地管理和操作XML数据。

在C 中处理XML数据结构可以使用TinyXML或pugixml库。1)使用pugixml库解析和生成XML文件。2)处理复杂的嵌套XML元素,如书籍信息。3)优化XML处理代码,建议使用高效库和流式解析。通过这些步骤,可以高效处理XML数据。

C 在性能优化方面仍然占据主导地位,因为其低级内存管理和高效执行能力使其在游戏开发、金融交易系统和嵌入式系统中不可或缺。具体表现为:1)在游戏开发中,C 的低级内存管理和高效执行能力使得它成为游戏引擎开发的首选语言;2)在金融交易系统中,C 的性能优势确保了极低的延迟和高吞吐量;3)在嵌入式系统中,C 的低级内存管理和高效执行能力使得它在资源有限的环境中非常受欢迎。

C XML框架的选择应基于项目需求。1)TinyXML适合资源受限环境,2)pugixml适用于高性能需求,3)Xerces-C 支持复杂的XMLSchema验证,选择时需考虑性能、易用性和许可证。

C#适合需要开发效率和类型安全的项目,而C 适合需要高性能和硬件控制的项目。 1)C#提供垃圾回收和LINQ,适用于企业应用和Windows开发。 2)C 以高性能和底层控制着称,广泛用于游戏和系统编程。

C 代码优化可以通过以下策略实现:1.手动管理内存以优化使用;2.编写符合编译器优化规则的代码;3.选择合适的算法和数据结构;4.使用内联函数减少调用开销;5.应用模板元编程在编译时优化;6.避免不必要的拷贝,使用移动语义和引用参数;7.正确使用const帮助编译器优化;8.选择合适的数据结构,如std::vector。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

禅工作室 13.0.1
功能强大的PHP集成开发环境