搜索
首页后端开发Python教程如何构建您自己的 Google NotebookLM

随着音频内容消费的日益普及,将文档或书面内容转换为真实音频格式的能力最近已成为趋势。

虽然 Google 的 NotebookLM 在这个领域引起了关注,但我想探索使用现代云服务构建类似的系统。在本文中,我将向您介绍如何创建一个可扩展的云原生系统,该系统使用 FastAPI、Firebase、Google Cloud Pub/Sub 和 Azure 的文本转语音服务将文档转换为高质量的播客。

这里有一个展示,您可以参考该系统的结果:MyPodify Showcase

挑战

将文档转换为播客并不像通过文本转语音引擎运行文本那么简单。它需要仔细的处理、自然语言的理解以及处理各种文档格式的能力,同时保持流畅的用户体验。系统需要:

  • 高效处理多种文档格式
  • 生成具有多种声音的自然声音音频
  • 应对大规模文档处理而不影响用户体验
  • 为用户提供实时状态更新
  • 保持高可用性和可扩展性

架构深度探究

让我们分解关键组件并了解它们如何协同工作:

How to Build your very own Google

1.FastAPI后端

FastAPI 作为我们的后端框架,选择它有几个令人信服的原因:

  • 异步支持:FastAPI 的异步功能构建于 Starlette 之上,可有效处理并发请求
  • 自动 OpenAPI 文档:生成开箱即用的交互式 API 文档
  • 类型安全:利用 Python 的类型提示进行运行时验证
  • 高性能:速度可与 Node.js 和 Go 相媲美

这是我们的上传端点的详细信息:

@app.post('/upload')
async def upload_files(
    token: Annotated[ParsedToken, Depends(verify_firebase_token)],
    project_name: str,
    description: str,
    website_link: str,
    host_count: int,
    files: Optional[List[UploadFile]] = File(None)
):
    # Validate token
    user_id = token['uid']

    # Generate unique identifiers
    project_id = str(uuid.uuid4())
    podcast_id = str(uuid.uuid4())

    # Process and store files
    file_urls = await process_uploads(files, user_id, project_id)

    # Create Firestore document
    await create_project_document(user_id, project_id, {
        'status': 'pending',
        'created_at': datetime.now(),
        'project_name': project_name,
        'description': description,
        'file_urls': file_urls
    })

    # Trigger async processing
    await publish_to_pubsub(user_id, project_id, podcast_id, file_urls)

    return {'project_id': project_id, 'status': 'processing'}

2.Firebase集成

Firebase 为我们的应用程序提供了两项关键服务:

Firebase 存储

  • 通过自动缩放处理安全文件上传
  • 为生成的音频文件提供 CDN 支持的分发
  • 支持大文件断点续传

火库

  • 用于项目状态跟踪的实时数据库
  • 基于文档的结构非常适合项目元数据
  • 自动缩放,无需手动分片

以下是我们实现实时状态更新的方法:

async def update_status(user_id: str, project_id: str, status: str, metadata: dict = None):
    doc_ref = db.collection('projects').document(f'{user_id}/{project_id}')

    update_data = {
        'status': status,
        'updated_at': datetime.now()
    }

    if metadata:
        update_data.update(metadata)

    await doc_ref.update(update_data)

3. 谷歌云发布/订阅

Pub/Sub 作为我们的消息传递主干,支持:

  • 解耦架构以实现更好的可扩展性
  • 至少一次交货保证
  • 自动消息保留和重播
  • 失败消息的死信队列

消息结构示例:

@app.post('/upload')
async def upload_files(
    token: Annotated[ParsedToken, Depends(verify_firebase_token)],
    project_name: str,
    description: str,
    website_link: str,
    host_count: int,
    files: Optional[List[UploadFile]] = File(None)
):
    # Validate token
    user_id = token['uid']

    # Generate unique identifiers
    project_id = str(uuid.uuid4())
    podcast_id = str(uuid.uuid4())

    # Process and store files
    file_urls = await process_uploads(files, user_id, project_id)

    # Create Firestore document
    await create_project_document(user_id, project_id, {
        'status': 'pending',
        'created_at': datetime.now(),
        'project_name': project_name,
        'description': description,
        'file_urls': file_urls
    })

    # Trigger async processing
    await publish_to_pubsub(user_id, project_id, podcast_id, file_urls)

    return {'project_id': project_id, 'status': 'processing'}

4. 使用 Azure 语音服务生成语音

我们音频生成的核心使用 Azure 的认知服务语音 SDK。让我们看看我们如何实现听起来自然的语音合成:

async def update_status(user_id: str, project_id: str, status: str, metadata: dict = None):
    doc_ref = db.collection('projects').document(f'{user_id}/{project_id}')

    update_data = {
        'status': status,
        'updated_at': datetime.now()
    }

    if metadata:
        update_data.update(metadata)

    await doc_ref.update(update_data)

我们系统的独特功能之一是能够使用人工智能生成多语音播客。以下是我们如何处理不同主机的脚本生成:

{
    'user_id': 'uid_123',
    'project_id': 'proj_456',
    'podcast_id': 'pod_789',
    'file_urls': ['gs://bucket/file1.pdf'],
    'description': 'Technical blog post about cloud architecture',
    'host_count': 2,
    'action': 'CREATE_PROJECT'
}

对于语音合成,我们将不同的扬声器映射到特定的 Azure 语音:

import azure.cognitiveservices.speech as speechsdk
from pathlib import Path

class SpeechGenerator:
    def __init__(self):
        self.speech_config = speechsdk.SpeechConfig(
            subscription=os.getenv("AZURE_SPEECH_KEY"),
            region=os.getenv("AZURE_SPEECH_REGION")
        )

    async def create_speech_segment(self, text, voice, output_file):
        try:
            self.speech_config.speech_synthesis_voice_name = voice
            synthesizer = speechsdk.SpeechSynthesizer(
                speech_config=self.speech_config,
                audio_config=None
            )

            # Generate speech from text
            result = synthesizer.speak_text_async(text).get()

            if result.reason == speechsdk.ResultReason.SynthesizingAudioCompleted:
                with open(output_file, "wb") as audio_file:
                    audio_file.write(result.audio_data)
                return True

            return False

        except Exception as e:
            logger.error(f"Speech synthesis failed: {str(e)}")
            return False

5. 后台处理工作者

工作组件处理繁重的工作:

  1. 文献分析

    • 从各种文档格式中提取文本
    • 分析文档结构和内容
    • 确定关键主题和部分
  2. 内容处理

    • 生成自然的对话流
    • 将内容分割成演讲者片段
    • 创建主题之间的过渡
  3. 音频生成

    • 使用 Azure 的神经语音将文本转换为语音
    • 处理多个说话者的声音
    • 应用音频后处理

这是我们的工作逻辑的简化视图:

async def generate_podcast_script(outline: str, analysis: str, host_count: int):
    # System instructions for different podcast formats
    system_instructions = TWO_HOST_SYSTEM_PROMPT if host_count > 1 else ONE_HOST_SYSTEM_PROMPT

    # Example of how we structure the AI conversation
    if host_count > 1:
        script_format = """
        **Alex**: "Hello and welcome to MyPodify! I'm your host Alex, joined by..."
        **Jane**: "Hi everyone! I'm Jane, and today we're diving into {topic}..."
        """
    else:
        script_format = """
        **Alex**: "Welcome to MyPodify! Today we're exploring {topic}..."
        """

    # Generate the complete script using AI
    script = await generate_content_from_openai(
        content=f"{outline}\n\nContent Details:{analysis}",
        system_instructions=system_instructions,
        purpose="Podcast Script"
    )

    return script

错误处理和可靠性

系统实现了全面的错误处理:

  1. 重试逻辑

    • API 调用失败的指数退避
    • 最大重试次数配置
    • 失败消息的死信队列
  2. 状态追踪

    • Firestore 中存储的详细错误消息
    • 向用户实时更新状态
    • 监控错误聚合
  3. 资源清理

    • 自动删除临时文件
    • 上传清理失败
    • 孤立资源检测

扩展和性能优化

为了处理生产负载,我们实施了多项优化:

  1. 工作人员缩放

    • 基于队列长度的水平扩展
    • 基于资源的自动缩放
    • 区域部署以降低延迟
  2. 存储优化

    • 内容去重
    • 压缩音频存储
    • CDN 集成交付
  3. 处理优化

    • 类似文档的批量处理
    • 缓存重复内容
    • 尽可能并行处理

监控和可观察性

系统包括全面监控:

@app.post('/upload')
async def upload_files(
    token: Annotated[ParsedToken, Depends(verify_firebase_token)],
    project_name: str,
    description: str,
    website_link: str,
    host_count: int,
    files: Optional[List[UploadFile]] = File(None)
):
    # Validate token
    user_id = token['uid']

    # Generate unique identifiers
    project_id = str(uuid.uuid4())
    podcast_id = str(uuid.uuid4())

    # Process and store files
    file_urls = await process_uploads(files, user_id, project_id)

    # Create Firestore document
    await create_project_document(user_id, project_id, {
        'status': 'pending',
        'created_at': datetime.now(),
        'project_name': project_name,
        'description': description,
        'file_urls': file_urls
    })

    # Trigger async processing
    await publish_to_pubsub(user_id, project_id, podcast_id, file_urls)

    return {'project_id': project_id, 'status': 'processing'}

未来的增强功能

虽然当前系统运行良好,但未来的改进还有一些令人兴奋的可能性:

  1. 增强的音频处理

    • 背景音乐整合
    • 高级音频效果
    • 自定义语音训练
  2. 内容增强

    • 自动章节标记
    • 互动文字记录
    • 多语言支持
  3. 平台整合

    • 直接播客平台发布
    • RSS feed 生成
    • 社交媒体分享

构建文档到播客转换器是进入现代云架构的激动人心的旅程。 FastAPI、Firebase、Google Cloud Pub/Sub 和 Azure 的文本转语音服务的组合为大规模处理复杂的文档处理提供了坚实的基础。

事件驱动的架构确保系统在负载下保持响应,而托管服务的使用减少了运营开销。无论您是构建类似的系统还是只是探索云原生架构,我希望这次深入研究能够为构建可扩展、生产就绪的应用程序提供宝贵的见解。


想了解更多有关云架构和现代应用程序开发的信息吗?关注我,获取更多技术实用教程。

以上是如何构建您自己的 Google NotebookLM的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。