搜索
首页后端开发Python教程使用 Amazon Bedrock Converse API 节省时间!

通过 Bedrock,您可以访问一系列不同的大型语言模型(例如 Claude、Mistral、Llama 和 Amazon Titan),并且随时都有新版本可用。

有选择固然很棒,但必须为每个模型编写不同的请求代码却很痛苦。

这就是为什么在比较不同基础模型的输出时,Amazon Bedrock Converse API 将为您节省大量时间和精力!

一致性是关键!

Converse API 是一个一致的接口,适用于所有支持消息/系统提示的模型。这意味着您只需编写一次代码,即可用它来试验不同的模型。

这是一个说明其工作原理的示例,此练习的成本应

配置模型访问

开始之前,请务必检查您想要使用的模型在您所在的地区是否可用,并且您已启用对它们的访问,这是我正在使用的模型,您可以选择这些模型或选择您自己的模型:
anthropic.claude-v2
anthropic.claude-3-俳句
克劳德 3.5 十四行诗
小米斯特拉尔

Save time with the Amazon Bedrock Converse API!

1) 我们可以使用 AWS 控制台中的 CloudShell 完成所有操作。

Save time with the Amazon Bedrock Converse API!

2) 当 CloudShell 准备就绪后,安装 boto3,它是适用于 Python 的 AWS 开发工具包
pip 安装 boto3

Save time with the Amazon Bedrock Converse API!

3) 从 GitHub 下载名为 converse_demo.py 的文件 您可以使用 wget 并提供文件的原始路径来执行此操作:

wget https://raw.githubusercontent.com/fayekins/demos/refs/heads/main/converse_demo.py

Save time with the Amazon Bedrock Converse API!

converse_demo.py

#first we import boto3 and json 
import boto3, json

#create a boto3 session - stores config state and allows you to create service clients
session = boto3.Session()

#create a Bedrock Runtime Client instance - used to send API calls to AI models in Bedrock
bedrock = session.client(service_name='bedrock-runtime')

#here's our prompt telling the model what we want it to do, we can change this later
system_prompts = [{"text": "You are an app that creates reading lists for book groups."}]

#define an empty message list - to be used to pass the messages to the model
message_list = []

#here’s the message that I want to send to the model, we can change this later if we want
initial_message = {
            "role": "user",
               "content": [{"text": "Create a list of five novels suitable for a book group who are interested in classic novels."}],
               }

#the message above is appended to the message_list
message_list.append(initial_message)

#make an API call to the Bedrock Converse API, we define the model to use, the message, and inference parameters to use as well
response = bedrock.converse(
modelId="anthropic.claude-v2",
messages=message_list,
system=system_prompts,
inferenceConfig={
            "maxTokens": 2048,
            "temperature": 0,
            "topP": 1
            },
)

#invoke converse with all the parameters we provided above and after that, print the result 
response_message = response['output']['message']
print(json.dumps(response_message, indent=4))

4) 像这样运行Python代码:

python converse_demo.py

它应该给你类似这样的输出:

Save time with the Amazon Bedrock Converse API!

5) 我们还可以使用不同的模型运行相同的代码,方法是替换代码中的模型 ID,如下所示:

anthropic.claude-3-haiku-20240307-v1:0

比较第二个模型的输出,略有不同:

Save time with the Amazon Bedrock Converse API!

6) 我们可以用另一个版本再次测试:

anthropic.claude-3-5-sonnet-20240620-v1:0

Save time with the Amazon Bedrock Converse API!

当 Claude 的新版本发布时,我们可以请求访问,然后只需在代码中替换模型的名称即可!

访问被拒绝错误

如果您看到与此类似的错误,则仅意味着您正在尝试使用您尚无权访问的模型。只需请求访问该模型,并在授予访问权限后重试。

Save time with the Amazon Bedrock Converse API!

7) 我还尝试使用不同的模型提供商,将模型 ID 更改为:

mistral.mistral-small-2402-v1:0

Save time with the Amazon Bedrock Converse API!

因此,Converse API 为您提供了一个简单、一致的 API,可与所有支持消息的 Amazon Bedrock 模型配合使用。这意味着您可以编写一次代码并将其与不同的模型一起使用来比较结果!

所以下次您与 Bedrock 合作时,帮自己一个忙,尝试一下 Converse API,稍后再感谢我!

以上是使用 Amazon Bedrock Converse API 节省时间!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Python查找文本文件的ZIPF分布如何使用Python查找文本文件的ZIPF分布Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

如何在Python中下载文件如何在Python中下载文件Mar 01, 2025 am 10:03 AM

Python 提供多种从互联网下载文件的方法,可以使用 urllib 包或 requests 库通过 HTTP 进行下载。本教程将介绍如何使用这些库通过 Python 从 URL 下载文件。 requests 库 requests 是 Python 中最流行的库之一。它允许发送 HTTP/1.1 请求,无需手动将查询字符串添加到 URL 或对 POST 数据进行表单编码。 requests 库可以执行许多功能,包括: 添加表单数据 添加多部分文件 访问 Python 的响应数据 发出请求 首

python中的图像过滤python中的图像过滤Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

如何使用Python使用PDF文档如何使用Python使用PDF文档Mar 02, 2025 am 09:54 AM

PDF 文件因其跨平台兼容性而广受欢迎,内容和布局在不同操作系统、阅读设备和软件上保持一致。然而,与 Python 处理纯文本文件不同,PDF 文件是二进制文件,结构更复杂,包含字体、颜色和图像等元素。 幸运的是,借助 Python 的外部模块,处理 PDF 文件并非难事。本文将使用 PyPDF2 模块演示如何打开 PDF 文件、打印页面和提取文本。关于 PDF 文件的创建和编辑,请参考我的另一篇教程。 准备工作 核心在于使用外部模块 PyPDF2。首先,使用 pip 安装它: pip 是 P

如何在django应用程序中使用redis缓存如何在django应用程序中使用redis缓存Mar 02, 2025 am 10:10 AM

本教程演示了如何利用Redis缓存以提高Python应用程序的性能,特别是在Django框架内。 我们将介绍REDIS安装,Django配置和性能比较,以突出显示BENE

引入自然语言工具包(NLTK)引入自然语言工具包(NLTK)Mar 01, 2025 am 10:05 AM

自然语言处理(NLP)是人类语言的自动或半自动处理。 NLP与语言学密切相关,并与认知科学,心理学,生理学和数学的研究有联系。在计算机科学

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器