搜索
首页后端开发Python教程梯度消失和爆炸问题以及 ReLU 死亡问题

Vanishing & Exploding Gradient Problem & Dying ReLU Problem

请我喝杯咖啡☕

*备忘录:

  • 我的帖子解释了过拟合和欠拟合。
  • 我的文章解释了 PyTorch 中的层。
  • 我的文章解释了 PyTorch 中的激活函数。
  • 我的文章解释了 PyTorch 中的损失函数。
  • 我的文章解释了 PyTorch 中的优化器。

梯度消失问题

  • 是在反向传播过程中,梯度越来越小或者为零,从输出层到输入层多次将小梯度相乘,则模型无法有效训练。
  • 模型中层数越多,更容易发生。
  • 很容易由Sigmoid激活函数引起,它是PyTorch中的Sigmoid(),因为它产生范围为0
  • 发生于:
    • CNN(卷积神经网络).
    • RNN(循环神经网络) 是 PyTorch 中的 RNN()。
  • 不容易发生在:
    • LSTM(长短期记忆) 即 PyTorch 中的 LSTM()。
    • GRU(门控循环单元) 即 PyTorch 中的 GRU()。
    • Resn​​et(残差神经网络),即 PyTorch 中的 Resnet。
    • Transformer 是 PyTorch 中的 Transformer()。
    • 等等
  • 在以下情况下可以被检测到:
    • 靠近输出层的层参数显着变化,而靠近输入层的层参数略有变化或保持不变。
    • 输入层附近各层的权重接近0或变为0。
    • 收敛缓慢或停止。
  • 可以通过以下方式缓解:
    • 批量归一化层,即 PyTorch 中的 BatchNorm1d()、BatchNorm2d() 或 BatchNorm3d()。
    • Leaky ReLU 激活函数,即 PyTorch 中的 LeakyReLU()。 *您还可以使用 ReLU 激活函数,即 PyTorch 中的 ReLU(),但它有时会导致 Dying ReLU Problem,我稍后会解释。
    • PReLU 激活函数 即 PyTorch 中的 PReLU()。
    • ELU 激活函数 即 PyTorch 中的 ELU()。
    • 梯度裁剪,即PyTorch中的clip_grad_norm_()或clip_grad_value_()。 *渐变裁剪是将渐变保持在指定范围内的方法。

梯度爆炸问题

  • 在反向传播过程中,梯度变得越来越大,从输出层到输入层将更大的梯度相乘多次,然后就不可能收敛。
  • 模型中层数越多,更容易发生。
  • 发生于:
    • CNN.
    • RNN.
    • LSTM.
    • GRU.
  • 不容易发生在:
    • Resn​​et.
    • 变压器
    • 等等
  • 在以下情况下可以被检测到:
    • 模型的权重显着增加。
    • 模型的权重显着增加,最终变成NaN。
    • 收敛是波动的,没有完成。
  • 可以通过以下方式缓解:
    • 批量归一化层.
    • 渐变裁剪.

Dying ReLU 问题

  • 在反向传播过程中,一旦具有ReLU激活函数的节点(神经元)接收到零或负输入值,它们总是为任何输入值产生零,最后,它们永远不会恢复产生任何值,除了为零,则无法有效训练模型。
  • 也称为Dead ReLU问题
  • 更容易发生在:
    • 更高的学习率。
    • 更高的负面偏见。
  • 在以下情况下可以被检测到:
    • 收敛缓慢或停止。
    • 损失函数返回 nan。
  • 可以通过以下方式缓解:
    • 较低的学习率。
    • 积极的偏见。
    • Leaky ReLU 激活函数.
    • PReLU 激活函数.
    • ELU 激活函数.

以上是梯度消失和爆炸问题以及 ReLU 死亡问题的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境