计算两个 Pandas 列之间的时间差(以小时和分钟为单位)
确定 DataFrame 中两个日期列之间的时间差对于各种应用程序。但是,使用减法运算符的标准方法会生成包含天数的 datetime.timedelta 对象。要将其转换为小时和分钟,我们可以利用 as_type 方法。
假设我们的 DataFrame 中有两列,fromdate 和 todate,分别代表开始时间和结束时间。使用减法运算符,我们得到的时间差如下:
import pandas as pd data = {'todate': [pd.Timestamp('2014-01-24 13:03:12.050000'), pd.Timestamp('2014-01-27 11:57:18.240000'), pd.Timestamp('2014-01-23 10:07:47.660000')], 'fromdate': [pd.Timestamp('2014-01-26 23:41:21.870000'), pd.Timestamp('2014-01-27 15:38:22.540000'), pd.Timestamp('2014-01-23 18:50:41.420000')]} df = pd.DataFrame(data) df['diff'] = df['fromdate'] - df['todate']
这给我们提供了以下输出,其中包括天数:
todate fromdate diff 0 2014-01-24 13:03:12.050 2014-01-26 23:41:21.870 2 days 10:38:09.820000 1 2014-01-27 11:57:18.240 2014-01-27 15:38:22.540 0 days 03:41:04.300000 2 2014-01-23 10:07:47.660 2014-01-23 18:50:41.420 0 days 08:42:53.760000
将时差转换为仅小时和分钟,我们可以使用 as_type 方法将 datetime.timedelta 对象转换为timedelta64 具有特定测量单位的对象:
df['diff_hours'] = df['diff'].astype('timedelta64[h]')
这为我们提供了输出:
todate fromdate diff diff_hours 0 2014-01-24 13:03:12.050 2014-01-26 23:41:21.870 2 days 10:38:09.820 58 1 2014-01-27 11:57:18.240 2014-01-27 15:38:22.540 0 days 03:41:04.300 3 2 2014-01-23 10:07:47.660 2014-01-23 18:50:41.420 0 days 08:42:53.760 8
如您所见,diff_hours 列现在包含两个日期之间的时差(以小时为单位)。
以上是如何有效计算两个 Pandas DataFrame 列之间的小时和分钟时间差?的详细内容。更多信息请关注PHP中文网其他相关文章!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

WebStorm Mac版
好用的JavaScript开发工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。