数据可视化是分析和呈现数据最强大的工具之一。 Seaborn 是一个基于 Matplotlib 构建的 Python 库,提供了用于创建信息丰富且多样化的可视化的高级接口。本文将指导您选择正确的 Seaborn 绘图、对其进行自定义以使其清晰,并避免常见的陷阱。
为什么选择正确的绘图类型很重要?
您选择的绘图类型直接影响数据呈现其见解和信息的有效性。
散点图揭示了变量之间的相关性。
热图简化了大规模比较。
使用错误的绘图类型可能会导致误解,有时,由于我们选择了错误的可视化,这些来自数据的见解被隐藏起来而永远不会被揭示。
Seaborn 图分为三个主要类别:关系、分布 和分类。以下是如何选择和使用它们。
来源:https://seaborn.pydata.org/_images/function_overview_8_0.png
关系图可视化两个变量之间的关系,通常是数值关系。 Seaborn 提供两种主要类型的关系图:散点图和线图。您可以使用relplot() 函数创建这些图。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
或者你可以这样写:
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
结果还是一样。
来源:seaborn 文档
散点图显示各个数据点,可以轻松识别模式或相关性。另一方面,线图非常适合展示一段时间内或跨类别的趋势。
了解变量的分布是分析或建模数据的关键的第一步。分布图旨在揭示单个变量的分布或离散度。这些可视化可以快速解决关键问题,例如:数据覆盖什么范围?其中心趋势是什么?数据是否向特定方向倾斜?
与关系图一样,可以使用 displot() 函数通过指定 kind 参数来选择所需的绘图类型来创建分布图。或者,您可以直接使用 histplot()、kdeplot()、ecdfplot() 或 rugplot() 等函数来实现特定的分布可视化。
histplot() 函数非常适合可视化频率分布。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
来源:seaborn 文档
kdeplot() 更适合显示平滑的分布曲线,而 ecdfplot() 则强调累积比例。 rugplot() 为原始数据点添加详细标记,以更精细的细节增强其他可视化效果。
Seaborn 还支持使用 heatmap() 等工具可视化二元分布。热图对于说明相关矩阵或进行比较特别有效。
分类图旨在可视化按类别组织的数据。创建这些绘图的一般方法是使用 catplot() 函数,指定 kind 参数来选择所需的绘图类型。这些地块分为三个主要系列。
选择正确的分类图类型取决于您要回答的具体问题。这些图提供了分析分类数据的多种视角:
- 分类散点图
这些图显示类别内的各个数据点,有助于识别模式或分布。示例包括 stripplot() 和 swarmplot()。
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
来源:seaborn 文档
- 分类分布图
这些图总结了类别内的数据分布,提供了对变异性、分布和集中趋势的见解。示例包括 boxplot()、violinplot() 和 boxenplot()。
- 分类估计图
这些图计算汇总估计值(例如平均值)并包含误差线以显示变异性或置信区间。示例包括 barplot()、pointplot() 和 countplot()。
在绘制之前,问自己这些问题:
数据是分类数据、数值数据还是两者兼而有之?
您在探索关系、分布或比较吗?
数据集的大小和比例是多少?
了解您的数据可以指导您使用最合适的可视化工具。下面的架构来自 Kaggle,展示了如何根据您拥有的数据类型选择图表。
来源:kaggle
让我们使用现实世界的数据来实现这一点。考虑来自 Kaggle 的数据集,其中包含 20 列,包括学习时间、出勤率、家长参与、资源获取、课外活动、睡眠时间、以前的分数、动机水平、互联网访问、辅导课程、家庭收入、教师质量、学校等特征类型、同伴影响、体力活动、学习障碍、父母教育水平、离家距离、性别和考试成绩。
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
fmri = sns.load_dataset("fmri") sns.lineplot(data=fmri, x="timepoint", y="signal")
sns.displot(penguins, x="flipper_length_mm", hue="sex", multiple="dodge")
sns.relplot( data=tips, x="total_bill", y="tip", hue="smoker",> <p><img src="https://img.php.cn/upload/article/000/000/000/173294521670198.jpg" alt="Seaborn Plot Selection Made Easy: How to Visualize Your Data Effectively"><br> source: seaborn documentation</p> <p>Alternatively, you can use the scatterplot() function directly for scatter plots, which produce the same result. For line plots, you can either use relplot() with kind="line" or the more direct lineplot() function.<br> </p> <pre class="brush:php;toolbar:false">fmri = sns.load_dataset("fmri") sns.relplot(data=fmri, x="timepoint", y="signal", kind="line")
使用 plt.title()、plt.xlabel() 和 plt.ylabel() 等函数添加标题和标签,提高可视化的清晰度。要合并分类维度,请利用 Seaborn 中的色调属性,它允许您根据数据集中的特定列来区分数据点。使用 set_palette() 函数使用 Coolwarm、husl 或 Set2 等调色板自定义配色方案。此外,通过使用 sns.set_theme() 调整数据点的样式或大小并使用 plt.figure(figsize=(width, height)) 定义图形尺寸来区分数据点。
为了通过数据可视化有效地传达见解,在提供足够的信息和避免绘图过度拥挤之间取得平衡至关重要。图表中过多的数据点可能会让观众不知所措,而细节不足可能会导致混乱。始终包含清晰的轴标签和图例,并确保可视化强调您想要强调的关键见解。
另一个常见问题是创建误导性的可视化效果。为了防止这种情况,请确保轴适当缩放以准确地表示数据。
选择正确的 Seaborn 图是增强数据理解和有效传达见解的关键一步。适当的可视化可以揭示可能隐藏的模式、关系和趋势。通过使情节类型与您的数据结构和分析目标保持一致(无论是探索分布、关系还是比较),您可以确保故事讲述的清晰度和精确度。
数据可视化既是一门艺术,也是一门科学。不要犹豫,尝试不同的 Seaborn 情节来发现新的观点或完善您的见解。通过实践和创造力,您将能够充分利用 Seaborn 的潜力,将原始数据转化为引人注目的视觉叙述。
以上是Seaborn 绘图选择变得简单:如何有效地可视化您的数据的详细内容。更多信息请关注PHP中文网其他相关文章!