Python 提供与 Ruby 相当的字符串插值吗?
在 Ruby 中,字符串插值允许将表达式插入到字符串中,从而增强代码可读性。 Ruby 字符串插值的示例:
name = "Spongebob Squarepants" puts "Who lives in a Pineapple under the sea? \n#{name}."
对于 Python 开发人员来说,等效的字符串连接可能看起来很冗长。
Python 3.6 及更高版本中的 Python 字符串插值
值得庆幸的是,Python 3.6 引入了与 Ruby 类似的文字字符串插值。在 Python 3.6 中,“f-strings”允许包含表达式:
name = "Spongebob Squarepants" print(f"Who lives in a Pineapple under the sea? {name}.")
Python 3.6 之前的替代方案
在 Python 3.6 之前,请考虑以下选项:
- % 运算符: 使用用于字符串插值的 % 运算符。第一个操作数是要插值的字符串,第二个操作数可以包含将字段名称映射到值的“映射”。可以使用 locals() 创建映射。
name = "Spongebob Squarepants" print("Who lives in a Pineapple under the sea? %(name)s." % locals())
- .format() 方法: 利用 .format() 方法插入字符串:
name = "Spongebob Squarepants" print("Who lives in a Pineapple under the sea? {name!s}.".format(**locals()))
- string.Template类: 使用 string.Template 类进行字符串插值:
tmpl = string.Template("Who lives in a Pineapple under the sea? $name.") print(tmpl.substitute(name="Spongebob Squarepants"))
以上是Python 是否有像 Ruby 那样的字符串插值?的详细内容。更多信息请关注PHP中文网其他相关文章!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境