在基于范围的 For 循环中查找当前对象的索引
在基于范围的 for 循环中,迭代容器直接提供对每个元素的访问,而不需要显式迭代器。然而,可能会出现这样的情况:需要确定循环中当前元素的索引而不依赖于单独的迭代器。本题探讨了一种使用组合和专门的拉链技术来实现这一目标的方法。
拉链技术
这种方法的关键在于用一路上的索引。拉链类旨在创建类似迭代器的对象,该对象提供对容器中元素的索引和值的访问。此拉链有效地充当原始容器迭代器的包装器。
实现
提供的 C 代码演示了此技术:
template <typename t> struct iterator_extractor { typedef typename T::iterator type; }; template <typename t> struct iterator_extractor<t const> { typedef typename T::const_iterator type; }; template <typename t> class Indexer { public: class iterator { typedef typename iterator_extractor<t>::type inner_iterator; typedef typename std::iterator_traits<inner_iterator>::reference inner_reference; public: typedef std::pair<size_t inner_reference> reference; iterator(inner_iterator it): _pos(0), _it(it) {} reference operator*() const { return reference(_pos, *_it); } iterator& operator++() { ++_pos; ++_it; return *this; } iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; } bool operator==(iterator const& it) const { return _it == it._it; } bool operator!=(iterator const& it) const { return !(*this == it); } private: size_t _pos; inner_iterator _it; }; Indexer(T& t): _container(t) {} iterator begin() const { return iterator(_container.begin()); } iterator end() const { return iterator(_container.end()); } private: T& _container; }; // class Indexer template <typename t> Indexer<t>> index(T& t) { return Indexer<t>>(t); }</t></t></typename></size_t></inner_iterator></t></typename></t></typename></typename>
This代码定义了一个 Indexer 类,它为给定的容器 T 创建一个索引迭代器。迭代器类提供对包含索引的对的引用和元素的值。 index 函数返回一个 Indexer 对象,可在基于范围的 for 循环中使用该对象来访问索引和值。
用法
使用此技术,只需使用索引函数将向量压缩为一系列整数:
#include <iostream> #include <iterator> #include <limits> #include <vector> int main() { std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8, 9}; for (auto p: index(v)) { std::cout <p>在此示例中,索引 p 变量迭代向量 v 的元素,提供对索引和值的访问。然后您可以在循环中轻松访问这些值。</p></int></vector></limits></iterator></iostream>
以上是如何在基于 C 范围的 For 循环中获取当前元素的索引?的详细内容。更多信息请关注PHP中文网其他相关文章!

在C 项目中集成XML可以通过以下步骤实现:1)使用pugixml或TinyXML库解析和生成XML文件,2)选择DOM或SAX方法进行解析,3)处理嵌套节点和多级属性,4)使用调试技巧和最佳实践优化性能。

在C 中使用XML是因为它提供了结构化数据的便捷方式,尤其在配置文件、数据存储和网络通信中不可或缺。1)选择合适的库,如TinyXML、pugixml、RapidXML,根据项目需求决定。2)了解XML解析和生成的两种方式:DOM适合频繁访问和修改,SAX适用于大文件或流数据。3)优化性能时,TinyXML适合小文件,pugixml在内存和速度上表现好,RapidXML处理大文件优异。

C#和C 的主要区别在于内存管理、多态性实现和性能优化。1)C#使用垃圾回收器自动管理内存,C 则需要手动管理。2)C#通过接口和虚方法实现多态性,C 使用虚函数和纯虚函数。3)C#的性能优化依赖于结构体和并行编程,C 则通过内联函数和多线程实现。

C 中解析XML数据可以使用DOM和SAX方法。1)DOM解析将XML加载到内存,适合小文件,但可能占用大量内存。2)SAX解析基于事件驱动,适用于大文件,但无法随机访问。选择合适的方法并优化代码可提高效率。

C 在游戏开发、嵌入式系统、金融交易和科学计算等领域中的应用广泛,原因在于其高性能和灵活性。1)在游戏开发中,C 用于高效图形渲染和实时计算。2)嵌入式系统中,C 的内存管理和硬件控制能力使其成为首选。3)金融交易领域,C 的高性能满足实时计算需求。4)科学计算中,C 的高效算法实现和数据处理能力得到充分体现。

C 没有死,反而在许多关键领域蓬勃发展:1)游戏开发,2)系统编程,3)高性能计算,4)浏览器和网络应用,C 依然是主流选择,展现了其强大的生命力和应用场景。

C#和C 的主要区别在于语法、内存管理和性能:1)C#语法现代,支持lambda和LINQ,C 保留C特性并支持模板。2)C#自动内存管理,C 需要手动管理。3)C 性能优于C#,但C#性能也在优化中。

在C 中处理XML数据可以使用TinyXML、Pugixml或libxml2库。1)解析XML文件:使用DOM或SAX方法,DOM适合小文件,SAX适合大文件。2)生成XML文件:将数据结构转换为XML格式并写入文件。通过这些步骤,可以有效地管理和操作XML数据。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

WebStorm Mac版
好用的JavaScript开发工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器