Python 的简单性使开发人员能够快速编写函数式程序,但先进的技术可以使您的代码更加高效、可维护和优雅。这些高级技巧和示例将把您的 Python 技能提升到一个新的水平。
1. 利用生成器提高内存效率
处理大型数据集时,使用生成器而不是列表来节省内存:
# List consumes memory upfront numbers = [i**2 for i in range(1_000_000)] # Generator evaluates lazily numbers = (i**2 for i in range(1_000_000)) # Iterate over the generator for num in numbers: print(num) # Processes one item at a time
原因: 生成器即时创建项目,避免了将整个序列存储在内存中的需要。
2. 使用数据类来简化类
对于主要存储数据的类,数据类减少了样板代码:
from dataclasses import dataclass @dataclass class Employee: name: str age: int position: str # Instead of defining __init__, __repr__, etc. emp = Employee(name="Alice", age=30, position="Engineer") print(emp) # Employee(name='Alice', age=30, position='Engineer')
为什么:数据类自动处理 __init__ 、 __repr__ 和其他方法。
3.掌握上下文管理器(带语句)
自定义上下文管理器简化资源管理:
from contextlib import contextmanager @contextmanager def open_file(file_name, mode): file = open(file_name, mode) try: yield file finally: file.close() # Usage with open_file("example.txt", "w") as f: f.write("Hello, world!")
原因:即使发生异常,上下文管理器也能确保正确的清理(例如,关闭文件)。
4。利用函数注释
注释提高了清晰度并支持静态分析:
def calculate_area(length: float, width: float) -> float: return length * width # IDEs and tools like MyPy can validate these annotations area = calculate_area(5.0, 3.2)
原因:注释使代码自我记录并帮助在开发过程中捕获类型错误。
5.应用装饰器以实现代码重用
装饰器在不改变原始功能的情况下扩展或修改功能:
def log_execution(func): def wrapper(*args, **kwargs): print(f"Executing {func.__name__} with {args}, {kwargs}") return func(*args, **kwargs) return wrapper @log_execution def add(a, b): return a + b result = add(3, 5) # Output: Executing add with (3, 5), {}
原因:装饰器减少了日志记录、身份验证或计时功能等任务的重复。
6. 使用 functools 实现高阶功能
functools 模块简化了复杂的函数行为:
from functools import lru_cache @lru_cache(maxsize=100) def fibonacci(n): if n <p><strong>原因:</strong>像 lru_cache 这样的函数通过记住昂贵的函数调用的结果来优化性能。</p> <hr> <h2> 7.了解收藏的力量 </h2> <p>集合模块提供高级数据结构:<br> </p> <pre class="brush:php;toolbar:false">from collections import defaultdict, Counter # defaultdict with default value word_count = defaultdict(int) for word in ["apple", "banana", "apple"]: word_count[word] += 1 print(word_count) # {'apple': 2, 'banana': 1} # Counter for frequency counting freq = Counter(["apple", "banana", "apple"]) print(freq.most_common(1)) # [('apple', 2)]
原因:defaultdict 和 Counter 简化了计算出现次数等任务。
8.使用concurrent.futures进行并行化
对于 CPU 密集型或 IO 密集型任务,并行执行可加快处理速度:
from concurrent.futures import ThreadPoolExecutor def square(n): return n * n with ThreadPoolExecutor(max_workers=4) as executor: results = executor.map(square, range(10)) print(list(results)) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
为什么:并发.futures 使多线程和多处理变得更容易。
9。使用pathlib进行文件操作
pathlib 模块提供了一种直观而强大的方法来处理文件路径:
from pathlib import Path path = Path("example.txt") # Write to a file path.write_text("Hello, pathlib!") # Read from a file content = path.read_text() print(content) # Check if a file exists if path.exists(): print("File exists")
原因:与 os 和 os.path 相比,pathlib 更具可读性和通用性。
10. 使用模拟编写单元测试
通过模拟依赖关系来测试复杂系统:
# List consumes memory upfront numbers = [i**2 for i in range(1_000_000)] # Generator evaluates lazily numbers = (i**2 for i in range(1_000_000)) # Iterate over the generator for num in numbers: print(num) # Processes one item at a time
原因: 模拟隔离了测试中的代码,确保外部依赖项不会干扰您的测试。
结论
掌握这些先进技术将提升您的 Python 编码技能。将它们合并到您的工作流程中,编写的代码不仅实用,而且高效、可维护且具有 Python 风格。快乐编码!
以上是改进 Python 代码的高级技巧的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver Mac版
视觉化网页开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能