Bluemarz是一个新的Python编写的AI框架;它也是一个专门为管理和编排多个人工智能代理而设计的开源平台。它带来了人工智能开源行业所缺乏的可扩展性和灵活性。
从无状态架构到对多种语言模型(例如 OpenAI、Anthropic Claude 和 Google Gemini)的支持,Bluemarz 提供了强大的解决方案来满足企业在可扩展性、安全性和隐私方面的需求 - 所有这些对于项目/组织都至关重要处理敏感数据和复杂的工作流程。让我们简要探讨一下 Bluemarz 为何成为希望大规模部署 AI 代理的开发人员独特而强大的工具。
Bluemarz 入门
安装:您可以通过使用 pip 从 GitHub 安装 Bluemarz 来运行它:
pip install git https://github.com/StartADAM/bluemarz.git
基本工作流程:Bluemarz 引入了三个主要概念:代理、会话和分配。这些允许开发人员建立灵活的工作流程,多个代理可以在同一会话中进行交互,并根据需要从不同的法学硕士中提取。以下是来自其存储库的简单会话示例:https://github.com/StartADAM/bluemarz):
import bluemarz as bm import asyncio async def procedural_example(): # Initialize an agent using OpenAI agent = bm.openai.OpenAiAssistant.from_id(api_key, assistant_id) # Start a session session = bm.openai.OpenAiAssistantNativeSession.new_session(api_key) # Assign the agent to the session task = bm.Assignment(agent, session) task.add_message(bm.SessionMessage(role=bm.MessageRole.USER, text="What can you do?")) # Run the task and display the result res = await task.run_until_breakpoint() print(res) asyncio.run(procedural_example())
Bluemarz 的主要优点
Bluemarz 解决了 LangChain、LangGraph 和 Chainlit 等其他平台尚未完全解决的重大限制,特别是在多代理、多 LLM 支持和会话可扩展性方面。
是什么让 Bluemarz 与众不同
无状态且可扩展:由于其无状态设计,在 Kubernetes 集群或任何云平台上运行 Bluemarz 都很简单,不需要会话保留,从而增强了可扩展性。
多代理灵活性:您可以在单个会话中分配多个代理并动态添加或删除代理。这意味着,如果在会话中需要人工智能翻译代理,则可以即时添加它,而不会中断正在进行的对话。
企业级安全性: Bluemarz 专为适应企业环境而构建,已考虑到合规性和隐私控制。
动态代理选择:无论是通过代码还是使用人工智能驱动的选择器(即将推出),开发人员都可以轻松管理代理工作流程,增加对任务分配和性能的控制。
核心组件
提供商:这些是 Bluemarz 支持的法学硕士,包括 OpenAI、Anthropic Claude 和 Google Gemini,可以灵活地使用本地模型。
会话:会话代表 Bluemarz 中完全无状态的交互,在 LLM 提供商的基础设施中运行和存储会话。
代理和分配:可以动态定义代理并将其分配给会话。 Bluemarz 支持手动和编程代理分配,允许在活动会话期间进行实时更改。
使用工具扩展 Bluemarz
Bluemarz 最强大的功能之一是能够定义可重用工具。工具通过将法学硕士连接到外部系统、数据源或服务来扩展法学硕士的能力。以下是将摄氏度转换为开尔文的工具示例:
import bluemarz as bm import asyncio async def procedural_example(): # Initialize an agent using OpenAI agent = bm.openai.OpenAiAssistant.from_id(api_key, assistant_id) # Start a session session = bm.openai.OpenAiAssistantNativeSession.new_session(api_key) # Assign the agent to the session task = bm.Assignment(agent, session) task.add_message(bm.SessionMessage(role=bm.MessageRole.USER, text="What can you do?")) # Run the task and display the result res = await task.run_until_breakpoint() print(res) asyncio.run(procedural_example())
定义后,该工具可以在不同的代理和会话中使用,为任何需要温度转换的代理提供单点配置。
Bluemarz 的真实用例
客户支持自动化:Bluemarz 的多代理支持允许专门从事不同领域的代理在单个会话中实时协作,从而提高响应时间和相关性。
研发:开发人员可以使用 Bluemarz 来配置研究会话,让代理动态访问文档或数据集。
成本控制和优化:Bluemarz 代理的灵活性意味着仅部署必要的代理,从而降低组织的计算成本。
结论
如果您希望为新的、强大的、灵活的开源解决方案做出贡献,请查看:https://github.com/StartADAM/bluemarz。由于它是无状态的、适应性强并且可以进行企业级部署,因此它应该是一个伟大的项目组合,并且可以轻松为人工智能潮流做出贡献。无论您是跨多个代理协调单个复杂的任务,还是需要确保可扩展性和安全性,Bluemarz 都可以提供基础设施来支持和发展 AI 代理生态系统。
以上是用于多代理人工智能编排的开源平台的详细内容。更多信息请关注PHP中文网其他相关文章!

Python不是严格的逐行执行,而是基于解释器的机制进行优化和条件执行。解释器将代码转换为字节码,由PVM执行,可能会预编译常量表达式或优化循环。理解这些机制有助于优化代码和提高效率。

可以使用多种方法在Python中连接两个列表:1.使用 操作符,简单但在大列表中效率低;2.使用extend方法,效率高但会修改原列表;3.使用 =操作符,兼具效率和可读性;4.使用itertools.chain函数,内存效率高但需额外导入;5.使用列表解析,优雅但可能过于复杂。选择方法应根据代码上下文和需求。

有多种方法可以合并Python列表:1.使用 操作符,简单但对大列表不内存高效;2.使用extend方法,内存高效但会修改原列表;3.使用itertools.chain,适用于大数据集;4.使用*操作符,一行代码合并小到中型列表;5.使用numpy.concatenate,适用于大数据集和性能要求高的场景;6.使用append方法,适用于小列表但效率低。选择方法时需考虑列表大小和应用场景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python中,for循环用于遍历可迭代对象,while循环用于条件满足时重复执行操作。1)for循环示例:遍历列表并打印元素。2)while循环示例:猜数字游戏,直到猜对为止。掌握循环原理和优化技巧可提高代码效率和可靠性。

要将列表连接成字符串,Python中使用join()方法是最佳选择。1)使用join()方法将列表元素连接成字符串,如''.join(my_list)。2)对于包含数字的列表,先用map(str,numbers)转换为字符串再连接。3)可以使用生成器表达式进行复杂格式化,如','.join(f'({fruit})'forfruitinfruits)。4)处理混合数据类型时,使用map(str,mixed_list)确保所有元素可转换为字符串。5)对于大型列表,使用''.join(large_li

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6
视觉化网页开发工具