如何使用 Pandas 透视数据框
重塑表格数据是数据分析中的一项基本任务。数据透视是一种在数据框中调换行和列的技术,对于创建数据透视表和从不同角度探索数据通常很有用。让我们探索如何在强大的数据操作库 Pandas 中执行此操作。
要旋转数据框,主要使用 .pivot 方法。此方法需要多个参数:
- index:指定要成为透视数据帧索引的列。
- 列:指示要成为数据透视表的列标题的列。
- 值:表示应使用其值填充数据透视表的列。
例如,考虑以下数据框:
Indicator Country Year Value 1 Angola 2005 6 2 Angola 2005 13 3 Angola 2005 10 4 Angola 2005 11 5 Angola 2005 5 1 Angola 2006 3 2 Angola 2006 2 3 Angola 2006 7 4 Angola 2006 3 5 Angola 2006 6
要旋转此数据框以使 Indicator 列中的值成为新列,请使用以下代码:
out = df.pivot(index=['Country', 'Year'], columns='Indicator', values='Value') print(out)
此操作将生成以下旋转数据框:
Indicator 1 2 3 4 5 Country Year Angola 2005 6 13 10 11 5 2006 3 2 7 3 6
要将旋转数据框转换回平面表格,请使用 .rename_axis 删除指标轴并使用 .reset_index 转换国家/地区和年回到正常列。
print(out.rename_axis(columns=None).reset_index())
这将产生原始数据框结构:
Country Year 1 2 3 4 5 0 Angola 2005 6 13 10 11 5 1 Angola 2006 3 2 7 3 6
如果您的数据包含重复的标签组合(例如,国家/地区、年份、指标) ,使用.pivot_table。此方法默认采用平均值。
out = df.pivot_table( index=['Country', 'Year'], columns='Indicator', values='Value') print(out.rename_axis(columns=None).reset_index())
这将输出类似的旋转数据帧,但具有重复组合的平均值。
有关更详细的概述,请参阅 Pandas 用户重塑和数据透视表指南。
以上是如何使用 Pandas 旋转数据框?的详细内容。更多信息请关注PHP中文网其他相关文章!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),