搜索
首页后端开发Python教程InsightfulAI 简介:用于简化机器学习的公共 Alpha API

Introducing InsightfulAI: Public Alpha API for Simplified Machine Learning

我们很高兴推出 InsightfulAI,这是一个 公共 Alpha API,旨在让 Python 开发人员和数据科学家更轻松地执行分类和回归任务。此 alpha 版本已在 PyPI 上提供,允许您使用 pip 快速安装和测试它!

InsightfulAI 提供了简化、直观的设置,让您专注于解决问题,而不是处理复杂的机器学习代码。这是您成为早期采用者的机会,提供宝贵的反馈来塑造 InsightfulAI 的未来。


InsightfulAI Alpha API 的主要特性

  • 分类和回归:包括即用型逻辑回归和随机森林模型。
  • 重试逻辑:自动重试失败的操作以处理暂时性错误。
  • 可自定义参数:配置超参数,例如逻辑回归中的 C 和求解器,或随机森林的 n_estimators 和 max_depth。
  • 求解器选项:逻辑回归支持流行的求解器,例如“lbfgs”、“liblinear”和“saga”,允许根据数据集的大小和特征进行灵活性。
  • 批量异步处理:异步地批量执行模型训练、预测和评估,这对于处理大型数据集或实时应用程序特别有用。
  • OpenTelemetry 支持:通过内置 OpenTelemetry 跟踪来跟踪模型的训练和预测性能,简化监控和调试。

这个公共 Alpha API 提供了启动机器学习项目和集成基本监控的基本工具。


如何安装 InsightfulAI Public Alpha API

InsightfulAI 的 alpha 版本已在 PyPI 上发布!使用以下命令安装它:

pip install InsightfulAI

这将安装 InsightfulAI 的 alpha 版本,让您可以试验其功能并提供反馈以帮助我们改进它。


InsightfulAI 入门

这是有关在项目中使用 InsightfulAI 逻辑回归模型的快速教程。

第1步:导入并初始化

从 API 导入 InsightfulAI。选择您的模型类型(逻辑回归或随机森林),并使用您的首选设置进行初始化:

from insightful_ai_api import InsightfulAI

# Initialize the API for logistic regression with solver choice
model = InsightfulAI(model_type="logistic_regression", C=1.0, solver='lbfgs')  # Options: 'lbfgs', 'liblinear', 'saga'

第 2 步:准备数据

将数据集加载到 numpy 数组或 pandas 数据框中,然后将其拆分为训练集和测试集:

import numpy as np
from sklearn.model_selection import train_test_split

X = np.array([[...], ...])  # Features
y = np.array([...])          # Target

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

第 3 步:训练模型

使用拟合方法训练模型:

pip install InsightfulAI

第 4 步:批量异步预测

利用批量异步处理来高效地对大批量进行预测:

from insightful_ai_api import InsightfulAI

# Initialize the API for logistic regression with solver choice
model = InsightfulAI(model_type="logistic_regression", C=1.0, solver='lbfgs')  # Options: 'lbfgs', 'liblinear', 'saga'

第 5 步:评估模型性能

使用评估函数评估模型的准确性:

import numpy as np
from sklearn.model_selection import train_test_split

X = np.array([[...], ...])  # Features
y = np.array([...])          # Target

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

使用 OpenTelemetry 进行监控

InsightfulAI 包括用于监控和跟踪的 OpenTelemetry,让您能够深入了解模型的性能并轻松调试问题。


立即尝试 InsightfulAI Public Alpha API!

公共 Alpha API 版本是您亲身体验 InsightfulAI 并帮助影响其发展的机会。 从 PyPI 安装 InsightfulAI:

model.fit(X_train, y_train)
print("Model training complete!")

您的反馈至关重要 - 深入研究、探索功能,并让我们知道您的想法!

以上是InsightfulAI 简介:用于简化机器学习的公共 Alpha API的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

Python执行,那是什么?Python执行,那是什么?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:关键功能是什么Python:关键功能是什么May 14, 2025 am 12:02 AM

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具