搜索
首页后端开发Python教程如何将 2D NumPy 数组分割成更小的 2D 数组?

How can I Slice a 2D NumPy Array into Smaller 2D Arrays?

在 NumPy 中将 2D 数组切片为更小的 2D 数组

处理表示为 2D 数组的图像或其他数据时,通常需要将它们切成更小的数组以进行处理或分析。在 numpy 中,这可以通过组合重塑和交换轴操作来实现。

为了理解该方法,让我们考虑一个示例。假设我们有一个 2x4 数组 c:

c = np.arange(24).reshape((4, 6))

并且我们想将其切片为两个 2x2 数组。我们知道第一个块应包含前两行和前两列的元素,第二个块应包含其余元素。

重塑操作可用于将数组重塑为新形状,在本例中为 2x2x3。新形状中的行数和列数指定为前两个参数,第三个参数 -1 告诉 numpy 计算必要的维度以使重塑有效。

c.reshape(2, 2, -1)

swapaxes then交换行和列以获得所需的块格式:

c.reshape(2, 2, -1).swapaxes(1, 2)

最后,使用第二次重塑将数组展平为所需的形状:

c.reshape(2, 2, -1).swapaxes(1, 2).reshape(-1, 2, 2)

结果是两个2x2 数组,根据需要:

[[[ 0  1]
  [ 6  7]] [[ 2  3]
  [ 8  9]]]

[[[12 13]
  [18 19]] [[14 15]
  [20 21]]]

提供的代码包括一个块形函数,该函数将这种切片方法概括为任何所需数量的块:

def blockshaped(arr, nrows, ncols):
    return (arr.reshape(h//nrows, nrows, -1, ncols)
               .swapaxes(1, 2)
               .reshape(-1, nrows, ncols))

以上是如何将 2D NumPy 数组分割成更小的 2D 数组?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具