在 Spark DataFrame 中添加常量列
在 Spark 中,可以使用多种方法向 DataFrame 添加每行具有特定值的常量列。
lit 和其他函数 (Spark 1.3 )
在 Spark 1.3 及以上版本中,lit 函数用于创建一个文字值,它可以用作 DataFrame.withColumn 的第二个参数来添加常量列:
from pyspark.sql.functions import lit df.withColumn('new_column', lit(10))
对于更复杂的列,可以使用 array、map 和 struct 等函数来构建所需的列值:
from pyspark.sql.functions import array, map, struct df.withColumn("some_array", array(lit(1), lit(2), lit(3))) df.withColumn("some_map", map(lit("key1"), lit(1), lit("key2"), lit(2)))
typedLit (Spark 2.2 )
Spark 2.2 引入了 typedLit 函数,它支持提供 Seq、Map 和 Tuple 作为常量:
import org.apache.spark.sql.functions.typedLit df.withColumn("some_array", typedLit(Seq(1, 2, 3))) df.withColumn("some_struct", typedLit(("foo", 1, 0.3)))
使用 UDF
作为使用文字值的替代方法,可以创建一个为每行返回常量值的用户定义函数 (UDF),并使用该 UDF 添加列:
from pyspark.sql.functions import udf, lit def add_ten(row): return 10 add_ten_udf = udf(add_ten, IntegerType()) df.withColumn('new_column', add_ten_udf(lit(1.0)))
注意:
常量值也可以使用相同的构造作为参数传递给 UDF 或 SQL 函数。
以上是如何在 Spark DataFrame 中添加常量列?的详细内容。更多信息请关注PHP中文网其他相关文章!

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

记事本++7.3.1
好用且免费的代码编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。