二维阵列爪子压力测量的峰值检测算法
为了将狗爪子的压力测量分割成不同的解剖区域,本地可以使用最大过滤器。
局部最大过滤器实现
<code class="python">import numpy as np from scipy.ndimage.filters import maximum_filter from scipy.ndimage.morphology import generate_binary_structure, binary_erosion from scipy.ndimage.measurements import label def detect_peaks(image): """ Utilizes a local maximum filter to identify and return a mask of peak locations. """ # Defines an 8-connected neighborhood neighborhood = generate_binary_structure(2,2) # Detects local maxima local_max = maximum_filter(image, footprint=neighborhood)==image # Creates a mask of the background background = (image==0) # Erodes the background to isolate peaks eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) # Generates the final mask by removing background from the local_max mask detected_peaks = local_max ^ eroded_background return detected_peaks</code>
使用和后处理
注意:
实施增强的注意事项:
以上是局部最大值滤波器如何将狗爪压力测量结果分割成不同的区域?的详细内容。更多信息请关注PHP中文网其他相关文章!