有效地将连续文本分割成单词列表
这个问题提出了一个挑战:给定一个不带空格的文本字符串,设计一种算法来提取单个单词。
一种幼稚的方法会迭代地识别并删除最长的可能单词。然而,这种策略在现实场景中可能效率低下。
概率方法
为了克服这些限制,概率模型将词频纳入算法中。 Zipf 定律将单词的概率近似为与其词频排名成反比。
使用此模型,我们可以为每个可能的单词中断定义一个成本函数,作为整个句子的负对数概率,如果必须打破。采用动态规划来找到总成本最低的断词。
实现
下面提供的Python代码实现了该算法:
<code class="python">from math import log # Build a cost dictionary based on Zipf's law words = open("words-by-frequency.txt").read().split() maxword = max(len(x) for x in words) wordcost = dict((k, log((i+1)*log(len(words)))) for i,k in enumerate(words)) def infer_spaces(s): cost = [0] for i in range(1,len(s)+1): candidates = enumerate(reversed(cost[max(0, i-maxword):i])) c,k = min((c + wordcost.get(s[i-k-1:i], 9e999), k+1) for k,c in candidates) cost.append(c) out = [] i = len(s) while i>0: c,k = best_match(i) assert c == cost[i] out.append(s[i-k:i]) i -= k return " ".join(reversed(out))</code>
使用这个代码:
<code class="python">s = 'thumbgreenappleactiveassignmentweeklymetaphor' print(infer_spaces(s))</code>
产生:
thumb green apple active assignment weekly metaphor
优化
为了进一步提高效率,可以从单词列表构建后缀树减少搜索空间。将输入字符串分割成更小的块也可以减少内存使用。
结论
通过建模词频和使用动态规划,我们获得了一种有效的分割连续文本的算法分解为单个单词,为现实世界的文本提供准确的结果。
以上是我们如何使用概率方法有效地将连续文本分割成单词列表?的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver Mac版
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3汉化版
中文版,非常好用

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),