介绍
机器学习无处不在——推荐电影、标记图像,现在甚至对新闻文章进行分类。想象一下如果您可以在 PHP 中做到这一点!借助 Rubix ML,您可以以简单易懂的方式将机器学习的强大功能引入 PHP。本指南将引导您构建一个简单的新闻分类器,将文章分类为“体育”或“技术”等类别。最后,您将拥有一个工作分类器,可以根据新文章的内容预测其类别。
这个项目非常适合想要使用 PHP 进行机器学习的初学者,您可以按照 GitHub 上的完整代码进行操作。
目录
- 什么是 Rubix ML?
- 设置项目
- 创建新闻分类类
- 训练模型
- 预测新样本
- 最后的想法
Rubix 机器学习是什么?
Rubix ML 是一个 PHP 机器学习库,它将 ML 工具和算法引入 PHP 友好的环境中。无论您从事分类、回归、聚类,甚至自然语言处理,Rubix ML 都能满足您的需求。它允许您加载和预处理数据、训练模型并评估性能——所有这些都在 PHP 中进行。
Rubix ML 支持广泛的机器学习任务,例如:
- 分类:对数据进行分类,例如将电子邮件标记为垃圾邮件或非垃圾邮件。
- 回归:预测连续值,例如房价。
- 聚类:对没有标签的数据进行分组,就像寻找客户群一样。
- 自然语言处理 (NLP):处理文本数据,例如标记并将其转换为 ML 可用的格式。
让我们深入了解如何使用 Rubix ML 在 PHP 中构建简单的新闻分类器!
设置项目
我们将首先使用 Rubix ML 设置一个新的 PHP 项目并配置自动加载。
第1步:初始化项目目录
创建一个新的项目目录并导航到其中:
mkdir NewsClassifier cd NewsClassifier
第 2 步:安装 Rubix ML 和 Composer
确保您已安装 Composer,然后通过运行以下命令将 Rubix ML 添加到您的项目中:
composer require rubix/ml
步骤3:在composer.json中配置自动加载
要从项目的 src 目录自动加载类,请打开或创建一个composer.json 文件并添加以下配置:
{ "autoload": { "psr-4": { "NewsClassifier\": "src/" } }, "require": { "rubix/ml": "^2.5" } }
这告诉 Composer 自动加载 NewsClassifier 命名空间下 src 文件夹中的任何类。
第 4 步:运行 Composer Autoload Dump
添加自动加载配置后,运行以下命令重新生成 Composer 的自动加载器:
mkdir NewsClassifier cd NewsClassifier
第5步:目录结构
您的项目目录应如下所示:
composer require rubix/ml
- src/:包含您的 PHP 脚本。
- storage/:训练后的模型的保存位置。
- vendor/:包含 Composer 安装的依赖项。
创建新闻分类类
在 src/ 中,创建一个名为 Classification.php 的文件。该文件将包含训练模型和预测新闻类别的方法。
{ "autoload": { "psr-4": { "NewsClassifier\": "src/" } }, "require": { "rubix/ml": "^2.5" } }
此分类类包含以下方法:
- 训练:创建并训练基于管道的模型。
- 保存模型:将训练好的模型保存到指定路径
- 预测:加载保存的模型并预测新样本的类别。
训练模型
在 src/ 中创建一个名为 train.php 的脚本来训练模型。
composer dump-autoload
运行此脚本来训练模型:
NewsClassifier/ ├── src/ │ ├── Classification.php │ └── train.php ├── storage/ ├── vendor/ ├── composer.json └── composer.lock
如果成功,您将看到:
<?php namespace NewsClassifier; use Rubix\ML\Classifiers\KNearestNeighbors; use Rubix\ML\Datasets\Labeled; use Rubix\ML\Datasets\Unlabeled; use Rubix\ML\PersistentModel; use Rubix\ML\Pipeline; use Rubix\ML\Tokenizers\Word; use Rubix\ML\Transformers\TfIdfTransformer; use Rubix\ML\Transformers\WordCountVectorizer; use Rubix\ML\Persisters\Filesystem; class Classification { private $modelPath; public function __construct($modelPath) { $this->modelPath = $modelPath; } public function train() { // Sample data and corresponding labels $samples = [ ['The team played an amazing game of soccer'], ['The new programming language has been released'], ['The match between the two teams was incredible'], ['The new tech gadget has been launched'], ]; $labels = [ 'sports', 'technology', 'sports', 'technology', ]; // Create a labeled dataset $dataset = new Labeled($samples, $labels); // Set up the pipeline with a text transformer and K-Nearest Neighbors classifier $estimator = new Pipeline([ new WordCountVectorizer(10000, 1, 1, new Word()), new TfIdfTransformer(), ], new KNearestNeighbors(4)); // Train the model $estimator->train($dataset); // Save the model $this->saveModel($estimator); echo "Training completed and model saved.\n"; } private function saveModel($estimator) { $persister = new Filesystem($this->modelPath); $model = new PersistentModel($estimator, $persister); $model->save(); } public function predict(array $samples) { // Load the saved model $persister = new Filesystem($this->modelPath); $model = PersistentModel::load($persister); // Predict categories for new samples $dataset = new Unlabeled($samples); return $model->predict($dataset); } }
预测新样本
在 src/ 中创建另一个脚本,predict.php,根据训练的模型对新文章进行分类。
<?php require __DIR__ . '/../vendor/autoload.php'; use NewsClassifier\Classification; // Define the model path $modelPath = __DIR__ . '/../storage/model.rbx'; // Initialize the Classification object $classifier = new Classification($modelPath); // Train the model and save it $classifier->train();
运行预测脚本对样本进行分类:
php src/train.php
输出应显示每个示例文本及其预测类别。
最后的想法
通过本指南,您已经使用 Rubix ML 在 PHP 中成功构建了一个简单的新闻分类器!这展示了 PHP 如何比您想象的更加通用,为文本分类、推荐系统等任务引入机器学习功能。该项目的完整代码可在 GitHub 上获取。
尝试不同的算法或数据来扩展分类器。谁知道 PHP 可以进行机器学习?现在你知道了。
快乐编码!
以上是PHP 中的机器学习:使用 Rubix ML 构建新闻分类器的详细内容。更多信息请关注PHP中文网其他相关文章!

TheSecretTokeEpingAphp-PowerEdwebSiterUnningSmoothlyShyunderHeavyLoadInVolvOLVOLVOLDEVERSALKEYSTRATICES:1)emplactopCodeCachingWithOpcachingWithOpCacheToreCescriptexecution Time,2)使用atabasequercachingCachingCachingWithRedataBasEndataBaseLeSendataBaseLoad,3)

你应该关心DependencyInjection(DI),因为它能让你的代码更清晰、更易维护。1)DI通过解耦类,使其更模块化,2)提高了测试的便捷性和代码的灵活性,3)使用DI容器可以管理复杂的依赖关系,但要注意性能影响和循环依赖问题,4)最佳实践是依赖于抽象接口,实现松散耦合。

是的,优化papplicationispossibleandessential.1)empartcachingingcachingusedapcutorediucedsatabaseload.2)优化的atabaseswithexing,高效Quereteries,and ConconnectionPooling.3)EnhanceCodeWithBuilt-unctions,避免使用,避免使用ingglobalalairaiables,并避免使用

theKeyStrategiestosiminificallyBoostphpapplicationPermenCeare:1)useOpCodeCachingLikeLikeLikeLikeLikeCacheToreDuceExecutiontime,2)优化AtabaseInteractionswithPreparedStateTemtStatementStatementSandProperIndexing,3)配置

aphpdepentioncontiveContainerIsatoolThatManagesClassDeptions,增强codemodocultion,可验证性和Maintainability.itactsasaceCentralHubForeatingingIndections,因此reducingTightCightTightCoupOulplingIndeSingantInting。

选择DependencyInjection(DI)用于大型应用,ServiceLocator适合小型项目或原型。1)DI通过构造函数注入依赖,提高代码的测试性和模块化。2)ServiceLocator通过中心注册获取服务,方便但可能导致代码耦合度增加。

phpapplicationscanbeoptimizedForsPeedAndeffificeby:1)启用cacheInphp.ini,2)使用preparedStatatementSwithPdoforDatabasequesies,3)3)替换loopswitharray_filtaray_filteraray_maparray_mapfordataprocrocessing,4)conformentnginxasaseproxy,5)

phpemailvalidation invoLvesthreesteps:1)格式化进行regulareXpressecthemailFormat; 2)dnsvalidationtoshethedomainhasavalidmxrecord; 3)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Linux新版
SublimeText3 Linux最新版

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中