搜索
首页后端开发php教程PHP 中的机器学习:使用 Rubix ML 构建新闻分类器

Machine Learning in PHP: Build a News Classifier Using Rubix ML

介绍

机器学习无处不在——推荐电影、标记图像,现在甚至对新闻文章进行分类。想象一下如果您可以在 PHP 中做到这一点!借助 Rubix ML,您可以以简单易懂的方式将机器学习的强大功能引入 PHP。本指南将引导您构建一个简单的新闻分类器,将文章分类为“体育”或“技术”等类别。最后,您将拥有一个工作分类器,可以根据新文章的内容预测其类别。

这个项目非常适合想要使用 PHP 进行机器学习的初学者,您可以按照 GitHub 上的完整代码进行操作。

目录

  1. 什么是 Rubix ML?
  2. 设置项目
  3. 创建新闻分类类
  4. 训练模型
  5. 预测新样本
  6. 最后的想法

Rubix 机器学习是什么?

Rubix ML 是一个 PHP 机器学习库,它将 ML 工具和算法引入 PHP 友好的环境中。无论您从事分类、回归、聚类,甚至自然语言处理,Rubix ML 都能满足您的需求。它允许您加载和预处理数据、训练模型并评估性能——所有这些都在 PHP 中进行。

Rubix ML 支持广泛的机器学习任务,例如:

  • 分类:对数据进行分类,例如将电子邮件标记为垃圾邮件或非垃圾邮件。
  • 回归:预测连续值,例如房价。
  • 聚类:对没有标签的数据进行分组,就像寻找客户群一样。
  • 自然语言处理 (NLP):处理文本数据,例如标记并将其转换为 ML 可用的格式。

让我们深入了解如何使用 Rubix ML 在 PHP 中构建简单的新闻分类器!

设置项目

我们将首先使用 Rubix ML 设置一个新的 PHP 项目并配置自动加载。

第1步:初始化项目目录

创建一个新的项目目录并导航到其中:

mkdir NewsClassifier
cd NewsClassifier

第 2 步:安装 Rubix ML 和 Composer

确保您已安装 Composer,然后通过运行以下命令将 Rubix ML 添加到您的项目中:

composer require rubix/ml

步骤3:在composer.json中配置自动加载

要从项目的 src 目录自动加载类,请打开或创建一个composer.json 文件并添加以下配置:

{
    "autoload": {
        "psr-4": {
            "NewsClassifier\": "src/"
        }
    },
    "require": {
        "rubix/ml": "^2.5"
    }
}

这告诉 Composer 自动加载 NewsClassifier 命名空间下 src 文件夹中的任何类。

第 4 步:运行 Composer Autoload Dump

添加自动加载配置后,运行以下命令重新生成 Composer 的自动加载器:

mkdir NewsClassifier
cd NewsClassifier

第5步:目录结构

您的项目目录应如下所示:

composer require rubix/ml
  • src/:包含您的 PHP 脚本。
  • storage/:训练后的模型的保存位置。
  • vendor/:包含 Composer 安装的依赖项。

创建新闻分类类

在 src/ 中,创建一个名为 Classification.php 的文件。该文件将包含训练模型和预测新闻类别的方法。

{
    "autoload": {
        "psr-4": {
            "NewsClassifier\": "src/"
        }
    },
    "require": {
        "rubix/ml": "^2.5"
    }
}

此分类类包含以下方法:

  • 训练:创建并训练基于管道的模型。
  • 保存模型:将训练好的模型保存到指定路径
  • 预测:加载保存的模型并预测新样本的类别。

训练模型

在 src/ 中创建一个名为 train.php 的脚本来训练模型。

composer dump-autoload

运行此脚本来训练模型:

NewsClassifier/
├── src/
│   ├── Classification.php
│   └── train.php
├── storage/
├── vendor/
├── composer.json
└── composer.lock

如果成功,您将看到:

<?php namespace NewsClassifier;

use Rubix\ML\Classifiers\KNearestNeighbors;
use Rubix\ML\Datasets\Labeled;
use Rubix\ML\Datasets\Unlabeled;
use Rubix\ML\PersistentModel;
use Rubix\ML\Pipeline;
use Rubix\ML\Tokenizers\Word;
use Rubix\ML\Transformers\TfIdfTransformer;
use Rubix\ML\Transformers\WordCountVectorizer;
use Rubix\ML\Persisters\Filesystem;

class Classification
{
    private $modelPath;

    public function __construct($modelPath)
    {
        $this->modelPath = $modelPath;
    }

    public function train()
    {
        // Sample data and corresponding labels
        $samples = [
            ['The team played an amazing game of soccer'],
            ['The new programming language has been released'],
            ['The match between the two teams was incredible'],
            ['The new tech gadget has been launched'],
        ];

        $labels = [
            'sports',
            'technology',
            'sports',
            'technology',
        ];

        // Create a labeled dataset
        $dataset = new Labeled($samples, $labels);

        // Set up the pipeline with a text transformer and K-Nearest Neighbors classifier
        $estimator = new Pipeline([
            new WordCountVectorizer(10000, 1, 1, new Word()),
            new TfIdfTransformer(),
        ], new KNearestNeighbors(4));

        // Train the model
        $estimator->train($dataset);

        // Save the model
        $this->saveModel($estimator);

        echo "Training completed and model saved.\n";
    }

    private function saveModel($estimator)
    {
        $persister = new Filesystem($this->modelPath);
        $model = new PersistentModel($estimator, $persister);
        $model->save();
    }

    public function predict(array $samples)
    {
        // Load the saved model
        $persister = new Filesystem($this->modelPath);
        $model = PersistentModel::load($persister);

        // Predict categories for new samples
        $dataset = new Unlabeled($samples);
        return $model->predict($dataset);
    }
}

预测新样本

在 src/ 中创建另一个脚本,predict.php,根据训练的模型对新文章进行分类。

<?php require __DIR__ . '/../vendor/autoload.php';

use NewsClassifier\Classification;

// Define the model path
$modelPath = __DIR__ . '/../storage/model.rbx';

// Initialize the Classification object
$classifier = new Classification($modelPath);

// Train the model and save it
$classifier->train();

运行预测脚本对样本进行分类:

php src/train.php

输出应显示每个示例文本及其预测类别。

最后的想法

通过本指南,您已经使用 Rubix ML 在 PHP 中成功构建了一个简单的新闻分类器!这展示了 PHP 如何比您想象的更加通用,为文本分类、推荐系统等任务引入机器学习功能。该项目的完整代码可在 GitHub 上获取。

尝试不同的算法或数据来扩展分类器。谁知道 PHP 可以进行机器学习?现在你知道了。
快乐编码!

以上是PHP 中的机器学习:使用 Rubix ML 构建新闻分类器的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
您应该多久再生一次会话ID?您应该多久再生一次会话ID?Apr 23, 2025 am 12:03 AM

会话ID应在登录时、敏感操作前和每30分钟定期重新生成。1.登录时重新生成会话ID可防会话固定攻击。2.敏感操作前重新生成提高安全性。3.定期重新生成降低长期利用风险,但需权衡用户体验。

如何在PHP中设置会话cookie参数?如何在PHP中设置会话cookie参数?Apr 22, 2025 pm 05:33 PM

在PHP中设置会话cookie参数可以通过session_set_cookie_params()函数实现。1)使用该函数设置参数,如过期时间、路径、域名、安全标志等;2)调用session_start()使参数生效;3)根据需求动态调整参数,如用户登录状态;4)注意设置secure和httponly标志以提升安全性。

在PHP中使用会议的主要目的是什么?在PHP中使用会议的主要目的是什么?Apr 22, 2025 pm 05:25 PM

在PHP中使用会话的主要目的是维护用户在不同页面之间的状态。1)会话通过session_start()函数启动,创建唯一会话ID并存储在用户cookie中。2)会话数据保存在服务器上,允许在不同请求间传递数据,如登录状态和购物车内容。

您如何在子域中分享会议?您如何在子域中分享会议?Apr 22, 2025 pm 05:21 PM

如何在子域名间共享会话?通过设置通用域名的会话cookie实现。1.在服务器端设置会话cookie的域为.example.com。2.选择合适的会话存储方式,如内存、数据库或分布式缓存。3.通过cookie传递会话ID,服务器根据ID检索和更新会话数据。

使用HTTP如何影响会话安全性?使用HTTP如何影响会话安全性?Apr 22, 2025 pm 05:13 PM

HTTPS通过加密数据传输、防止中间人攻击和提供身份验证,显着提升了会话的安全性。 1)加密数据传输:HTTPS使用SSL/TLS协议加密数据,确保数据在传输过程中不被窃取或篡改。 2)防止中间人攻击:通过SSL/TLS握手过程,客户端验证服务器证书,确保连接合法性。 3)提供身份验证:HTTPS确保连接的是合法服务器,保护数据完整性和机密性。

继续使用PHP:耐力的原因继续使用PHP:耐力的原因Apr 19, 2025 am 12:23 AM

PHP仍然流行的原因是其易用性、灵活性和强大的生态系统。1)易用性和简单语法使其成为初学者的首选。2)与web开发紧密结合,处理HTTP请求和数据库交互出色。3)庞大的生态系统提供了丰富的工具和库。4)活跃的社区和开源性质使其适应新需求和技术趋势。

PHP和Python:探索他们的相似性和差异PHP和Python:探索他们的相似性和差异Apr 19, 2025 am 12:21 AM

PHP和Python都是高层次的编程语言,广泛应用于Web开发、数据处理和自动化任务。1.PHP常用于构建动态网站和内容管理系统,而Python常用于构建Web框架和数据科学。2.PHP使用echo输出内容,Python使用print。3.两者都支持面向对象编程,但语法和关键字不同。4.PHP支持弱类型转换,Python则更严格。5.PHP性能优化包括使用OPcache和异步编程,Python则使用cProfile和异步编程。

PHP和Python:解释了不同的范例PHP和Python:解释了不同的范例Apr 18, 2025 am 12:26 AM

PHP主要是过程式编程,但也支持面向对象编程(OOP);Python支持多种范式,包括OOP、函数式和过程式编程。PHP适合web开发,Python适用于多种应用,如数据分析和机器学习。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具