多处理中的共享内存对象:优化数据共享
当使用Python的多处理库时,一个大的内存数组经常被复制多个使用相同功能的不同进程的时间。为了避免这种开销,最好跨进程共享数组,特别是当它是只读的时。
Fork 的 Copy-on-Write 行为
在操作中在具有写时复制分叉语义的系统中,例如类 UNIX 系统,父进程中数据结构的更改不会影响子进程,除非它们自己进行修改。因此,只要不修改数组,就可以跨进程共享它,而不会产生大量内存成本。
用于高效数组共享的Multiprocessing.Array
创建没有内存复制的共享数组,使用 numpy 或 array 创建一个高效的数组结构并将其放置在共享内存中。将此结构包装在 multiprocessing.Array 中并将其传递给您的函数。这种方法可确保高效的数据共享,同时最大限度地减少开销。
可写共享对象:锁和同步
如果共享对象需要修改,则必须使用同步或锁定来保护它机制。多处理提供两个选项:
其他注意事项
以上是如何在 Python 的多处理库中跨进程有效地共享大型内存数组?的详细内容。更多信息请关注PHP中文网其他相关文章!