首页  >  文章  >  后端开发  >  如何有效地将 Pandas DataFrame 与日期范围条件合并?

如何有效地将 Pandas DataFrame 与日期范围条件合并?

Barbara Streisand
Barbara Streisand原创
2024-11-02 13:49:02944浏览

How to Efficiently Merge Pandas DataFrames with Date Range Conditions?

将 Pandas 数据帧与日期范围条件合并

要合并两个 pandas 数据帧,其中一个值介于其他两个值之间,一种常见的方法是合并数据帧无条件地基于标识符,然后根据日期条件进行过滤。但是,此方法可能会导致内存效率低下。

利用 SQL 强大功能的替代解决方案是在 SQL 查询中执行合并和过滤,如下所示:

<code class="python">import pandas as pd
import sqlite3

# Create dataframes
presidents = pd.DataFrame({"name": ["Bush", "Obama", "Trump"],
                           "president_id":[43, 44, 45]})
terms = pd.DataFrame({'start_date': pd.date_range('2001-01-20', periods=5, freq='48M'),
                      'end_date': pd.date_range('2005-01-21', periods=5, freq='48M'),
                      'president_id': [43, 43, 44, 44, 45]})
war_declarations = pd.DataFrame({"date": [datetime(2001, 9, 14), datetime(2003, 3, 3)],
                                 "name": ["War in Afghanistan", "Iraq War"]})

# Create an in-memory database
conn = sqlite3.connect(':memory:')

# Write dataframes to database
terms.to_sql('terms', conn, index=False)
presidents.to_sql('presidents', conn, index=False)
war_declarations.to_sql('wars', conn, index=False)

# Execute SQL query to merge and filter dataframes
qry = '''
    select  
        start_date PresTermStart,
        end_date PresTermEnd,
        wars.date WarStart,
        presidents.name Pres
    from
        terms join wars on
        date between start_date and end_date join presidents on
        terms.president_id = presidents.president_id
    '''
df = pd.read_sql_query(qry, conn)

print(df)</code>

输出:

         PresTermStart          PresTermEnd             WarStart  Pres
0  2001-01-31 00:00:00  2005-01-31 00:00:00  2001-09-14 00:00:00  Bush
1  2001-01-31 00:00:00  2005-01-31 00:00:00  2003-03-03 00:00:00  Bush

通过在 SQL 中执行合并和过滤,我们可以避免创建潜在的大型中间数据帧,从而提高内存效率。

以上是如何有效地将 Pandas DataFrame 与日期范围条件合并?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn