揭开 BLAS 的性能秘密
矩阵乘法是线性代数中的基本运算,其效率直接影响科学计算的速度计算任务。用户对 BLAS(基本线性代数子程序)(这些乘法的实现)的卓越性能感到好奇,将其与自己的自定义实现进行比较,发现执行时间存在显着差异。
了解性能差距
要深入研究这种性能差距背后的原因,我们必须考虑不同级别的 BLAS:
- 级别 1: 向量操作通过 SIMD(单指令多数据)从矢量化中受益。
- 第 2 级: 可以在具有共享内存的多处理器架构中利用并行性的矩阵向量运算。
- 第 3 级: 对有限数据量执行大量运算的矩阵-矩阵运算。
第 3 级函数,如矩阵-矩阵乘法,对缓存层次结构特别敏感优化。通过减少缓存级别之间的数据移动,缓存优化的实现极大地提高了性能。
增强 BLAS 性能的因素
除了缓存优化之外,其他因素也有助于 BLAS 的卓越性能:
- 优化编译器:虽然编译器发挥了作用,但它们并不是 BLAS 效率的主要原因。
- 高效算法: BLAS实现通常采用已建立的矩阵乘法算法,例如标准三环方法。像 Strassen 算法或 Coppersmith-Winograd 算法这样的算法通常不会在 BLAS 中使用,因为它们的数值不稳定或大型矩阵的计算开销较高。
State-of-the-Art BLAS实现
现代 BLAS 实现(例如 BLIS)体现了性能优化方面的最新进展。 BLIS 提供了完全优化的矩阵-矩阵产品,具有卓越的速度和可扩展性。
通过了解 BLAS 的复杂架构,用户可以了解加速矩阵-矩阵乘法所面临的挑战和复杂性。缓存优化、高效算法和持续研究的结合确保 BLAS 始终是高性能科学计算的基石。
以上是为什么 BLAS 的矩阵-矩阵乘法比我的自定义实现快得多?的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了C标准模板库(STL),重点关注其核心组件:容器,迭代器,算法和函子。 它详细介绍了这些如何交互以启用通用编程,提高代码效率和可读性t

本文详细介绍了c中有效的STL算法用法。 它强调了数据结构选择(向量与列表),算法复杂性分析(例如,std :: sort vs. std vs. std :: partial_sort),迭代器用法和并行执行。 常见的陷阱

本文详细介绍了C中的有效异常处理,涵盖了尝试,捕捉和投掷机制。 它强调了诸如RAII之类的最佳实践,避免了不必要的捕获块,并为强大的代码登录例外。 该文章还解决了Perf

本文讨论了使用C中的移动语义来通过避免不必要的复制来提高性能。它涵盖了使用std :: Move的实施移动构造函数和任务运算符,并确定了关键方案和陷阱以有效

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

禅工作室 13.0.1
功能强大的PHP集成开发环境