按索引合并数据帧
简介
合并数据帧是数据分析中的常见任务合并来自多个来源的信息。通常,使用列作为匹配标准来执行合并。但是,在某些情况下,您可能需要根据索引合并数据帧。本文提供了如何实现这一目标的指导。
使用联接方法按索引合并数据帧
要按索引合并数据帧,您可以使用以下联接方法:
- merge: 默认执行内连接。
<code class="python">pd.merge(df1, df2, left_index=True, right_index=True)</code>
- join: 执行左连接默认情况下。
<code class="python">df1.join(df2)</code>
- concat: 默认执行外连接。
<code class="python">pd.concat([df1, df2], axis=1)</code>
示例
考虑以下数据框:
<code class="python">df1 = pd.DataFrame({'a':range(6), 'b':[5,3,6,9,2,4]}, index=list('abcdef')) df2 = pd.DataFrame({'c':range(4), 'd':[10,20,30, 40]}, index=list('abhi'))</code>
默认内部联接:
<code class="python">df3 = pd.merge(df1, df2, left_index=True, right_index=True)</code>
输出:
a b c d a 0 5 0 10 b 1 3 1 20
默认左连接:
<code class="python">df4 = df1.join(df2)</code>
输出:
a b c d a 0 5 0.0 10.0 b 1 3 1.0 20.0 c 2 6 NaN NaN d 3 9 NaN NaN e 4 2 NaN NaN f 5 4 NaN NaN
默认外连接:
<code class="python">df5 = pd.concat([df1, df2], axis=1)</code>
输出:
a b c d a 0.0 5.0 0.0 10.0 b 1.0 3.0 1.0 20.0 c 2.0 6.0 NaN NaN d 3.0 9.0 NaN NaN e 4.0 2.0 NaN NaN f 5.0 4.0 NaN NaN h NaN NaN 2.0 30.0 i NaN NaN 3.0 40.0
以上是如何根据索引合并数据帧?的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Linux新版
SublimeText3 Linux最新版

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具