首页  >  文章  >  后端开发  >  如何在 Python 中处理超出 NumPy 内存限制的非常大的矩阵?

如何在 Python 中处理超出 NumPy 内存限制的非常大的矩阵?

Mary-Kate Olsen
Mary-Kate Olsen原创
2024-10-31 07:30:30844浏览

How can I handle very large matrices in Python beyond NumPy's memory limits?

使用 Python 和 NumPy 的非常大的矩阵

虽然 NumPy 擅长处理达到特定大小的矩阵,但可以创建明显大于 10000 x 10000 的矩阵可能会面临内存限制。为了克服这一挑战,结合使用 PyTables 和 NumPy 是一种有效的解决方案。

PyTables 采用 HDF 技术将数据存储在磁盘上,并提供可选的压缩功能。通过利用 PyTables,您可以创建巨大的矩阵(例如,100 万乘 100 万),而无需大量 RAM。 PyTables 的压缩通常可以将数据大小减少 10 倍,在处理大型数据集时提供显着的存储效率。

以 NumPy 重新数组的形式访问存储在 HDF 中的数据非常简单,允许您使用熟悉的方式处理数据NumPy 语法。 HDF 库无缝检索必要的数据块并将其转换为 NumPy 兼容格式。

例如,要以 NumPy 记录的形式访问部分数据:

data = table[row_from:row_to]

通过组合PyTables 和 NumPy,您可以克服内存限制并轻松管理非常大的矩阵。 PyTables 处理数据的高效存储和检索,而 NumPy 提供方便的操作和分析接口。

以上是如何在 Python 中处理超出 NumPy 内存限制的非常大的矩阵?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn