Golang RESTful API 服务的综合示例,该服务使用 gin 进行路由、gorm 进行 ORM 以及 PostgreSQL 作为数据库。此示例包括以下 PostgreSQL 功能:数据库和表创建、数据插入和查询、索引、函数和存储过程、触发器、视图、CTE、事务、约束和 JSON 处理。
1. 项目设置
假设你已经设置了 PostgreSQL、Golang 和 go mod,初始化项目:
mkdir library-api cd library-api go mod init library-api
项目结构
/library-api |-- db.sql |-- main.go |-- go.mod
2.安装依赖项
安装必要的软件包:
go get github.com/gin-gonic/gin go get gorm.io/gorm go get gorm.io/driver/postgres
3.PostgreSQL 架构
这是一个用于创建数据库模式的 SQL 脚本:
-- Create the library database. CREATE DATABASE library; -- Connect to the library database. \c library; -- Create tables. CREATE TABLE authors ( id SERIAL PRIMARY KEY, name VARCHAR(100) NOT NULL UNIQUE, bio TEXT ); CREATE TABLE books ( id SERIAL PRIMARY KEY, title VARCHAR(200) NOT NULL, -- This creates a foreign key constraint: -- It establishes a relationship between author_id in the books table and the id column in the authors table, ensuring that each author_id corresponds to an existing id in the authors table. -- ON DELETE CASCADE: This means that if an author is deleted from the authors table, all related records in the books table (i.e., books written by that author) will automatically be deleted as well. author_id INTEGER REFERENCES authors(id) ON DELETE CASCADE, published_date DATE NOT NULL, description TEXT, details JSONB ); CREATE TABLE users ( id SERIAL PRIMARY KEY, name VARCHAR(100) NOT NULL, email VARCHAR(100) UNIQUE NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); -- CREATE TABLE borrow_logs ( -- id SERIAL PRIMARY KEY, -- user_id INTEGER REFERENCES users(id), -- book_id INTEGER REFERENCES books(id), -- borrowed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, -- returned_at TIMESTAMP -- ); -- Create a partitioned table for borrow logs based on year. -- The borrow_logs table is partitioned by year using PARTITION BY RANGE (borrowed_at). CREATE TABLE borrow_logs ( id SERIAL PRIMARY KEY, user_id INTEGER REFERENCES users(id), book_id INTEGER REFERENCES books(id), borrowed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, returned_at TIMESTAMP ) PARTITION BY RANGE (borrowed_at); -- Create partitions for each year. -- Automatic Routing: PostgreSQL automatically directs INSERT operations to the appropriate partition (borrow_logs_2023 or borrow_logs_2024) based on the borrowed_at date. CREATE TABLE borrow_logs_2023 PARTITION OF borrow_logs FOR VALUES FROM ('2023-01-01') TO ('2024-01-01'); CREATE TABLE borrow_logs_2024 PARTITION OF borrow_logs FOR VALUES FROM ('2024-01-01') TO ('2025-01-01'); -- Benefit: This helps in improving query performance and managing large datasets by ensuring that data for each year is stored separately. -- Indexes for faster searching. CREATE INDEX idx_books_published_date ON books (published_date); CREATE INDEX idx_books_details ON books USING GIN (details); -- GIN Index (Generalized Inverted Index). It is particularly useful for indexing columns with complex data types like arrays, JSONB, or text search fields -- Add a full-text index to the title and description of books CREATE INDEX book_text_idx ON books USING GIN (to_tsvector('english', title || ' ' || description)); -- to_tsvector('english', ...) converts the concatenated title and description fields into a Text Search Vector (tsv) suitable for full-text searching. -- The || operator concatenates the title and description fields, so both fields are indexed together for searching. -- 'english' specifies the language dictionary, which helps with stemming and stop-word filtering. -- Create a simple view for books with author information. CREATE VIEW book_author_view AS SELECT books.id AS book_id, books.title, authors.name AS author_name FROM books JOIN authors ON books.author_id = authors.id; -- Create a view to get user borrow history CREATE VIEW user_borrow_history AS SELECT u.id AS user_id, u.name AS user_name, b.title AS book_title, bl.borrowed_at, bl.returned_at FROM users u JOIN borrow_logs bl ON u.id = bl.user_id JOIN books b ON bl.book_id = b.id; -- Use a CTE to get all active borrow logs (not yet returned) WITH active_borrows AS ( SELECT * FROM borrow_logs WHERE returned_at IS NULL ) SELECT * FROM active_borrows; -- Function to calculate the number of books borrowed by a user. -- Creates a function that takes an INT parameter user_id and returns an INT value. If the function already exists, it will replace it. CREATE OR REPLACE FUNCTION get_borrow_count(user_id INT) RETURNS INT AS $$ -- is a placeholder for the first input. When the function is executed, PostgreSQL replaces with the actual user_id value that is passed in by the caller. SELECT COUNT(*) FROM borrow_logs WHERE user_id = ; $$ LANGUAGE SQL; -- AS $$ ... $$: This defines the body of the function between the dollar signs ($$). -- LANGUAGE SQL: Specifies that the function is written in SQL. -- Trigger to log activities. CREATE TABLE activity_logs ( id SERIAL PRIMARY KEY, description TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ); CREATE OR REPLACE FUNCTION log_activity() RETURNS TRIGGER AS $$ BEGIN INSERT INTO activity_logs (description) -- NEW refers to the new row being inserted or modified by the triggering event. VALUES ('A borrow_log entry has been added with ID ' || NEW.id); -- The function returns NEW, which means that the new data will be used as it is after the trigger action. RETURN NEW; END; $$ LANGUAGE plpgsql; -- It uses plpgsql, which is a procedural language in PostgreSQL CREATE TRIGGER log_borrow_activity AFTER INSERT ON borrow_logs FOR EACH ROW EXECUTE FUNCTION log_activity(); -- Add a JSONB column to store metadata ALTER TABLE books ADD COLUMN metadata JSONB; -- Example metadata: {"tags": ["fiction", "bestseller"], "page_count": 320}
4.Go语言代码
这是使用 Gin 和 GORM 的 RESTful API 的完整示例:
package main import ( "net/http" "time" "github.com/gin-gonic/gin" "gorm.io/driver/postgres" "gorm.io/gorm" ) type Author struct { ID uint `gorm:"primaryKey"` Name string `gorm:"not null;unique"` Bio string } type Book struct { ID uint `gorm:"primaryKey"` Title string `gorm:"not null"` AuthorID uint `gorm:"not null"` PublishedDate time.Time `gorm:"not null"` Details map[string]interface{} `gorm:"type:jsonb"` } type User struct { ID uint `gorm:"primaryKey"` Name string `gorm:"not null"` Email string `gorm:"not null;unique"` CreatedAt time.Time } type BorrowLog struct { ID uint `gorm:"primaryKey"` UserID uint `gorm:"not null"` BookID uint `gorm:"not null"` BorrowedAt time.Time `gorm:"default:CURRENT_TIMESTAMP"` ReturnedAt *time.Time } var db *gorm.DB func initDB() { dsn := "host=localhost user=postgres password=yourpassword dbname=library port=5432 sslmode=disable" var err error db, err = gorm.Open(postgres.Open(dsn), &gorm.Config{}) if err != nil { panic("failed to connect to database") } // Auto-migrate models. db.AutoMigrate(&Author{}, &Book{}, &User{}, &BorrowLog{}) } func main() { initDB() r := gin.Default() r.POST("/authors", createAuthor) r.POST("/books", createBook) r.POST("/users", createUser) r.POST("/borrow", borrowBook) r.GET("/borrow/:id", getBorrowCount) r.GET("/books", listBooks) r.Run(":8080") } func createAuthor(c *gin.Context) { var author Author if err := c.ShouldBindJSON(&author); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()}) return } if err := db.Create(&author).Error; err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, author) } func createBook(c *gin.Context) { var book Book if err := c.ShouldBindJSON(&book); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()}) return } if err := db.Create(&book).Error; err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, book) } func createUser(c *gin.Context) { var user User if err := c.ShouldBindJSON(&user); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()}) return } if err := db.Create(&user).Error; err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, user) } // The Golang code does not need changes specifically to use the partitioned tables; the partitioning is handled by PostgreSQL // you simply insert into the borrow_logs table, and PostgreSQL will automatically route the data to the correct partition. func borrowBook(c *gin.Context) { var log BorrowLog if err := c.ShouldBindJSON(&log); err != nil { c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()}) return } tx := db.Begin() if err := tx.Create(&log).Error; err != nil { tx.Rollback() c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } tx.Commit() c.JSON(http.StatusOK, log) } func getBorrowCount(c *gin.Context) { userID := c.Param("id") var count int if err := db.Raw("SELECT get_borrow_count(?)", userID).Scan(&count).Error; err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, gin.H{"borrow_count": count}) } // When querying a partitioned table in PostgreSQL using Golang, no changes are needed in the query logic or code. // You interact with the parent table (borrow_logs in this case) as you would with any normal table, and PostgreSQL automatically manages retrieving the data from the appropriate partitions. // Performance: PostgreSQL optimizes the query by scanning only the relevant partitions, which can significantly speed up queries when dealing with large datasets. // Here’s how you might query the borrow_logs table using GORM, even though it’s partitioned: func getBorrowLogs(c *gin.Context) { var logs []BorrowLog if err := db.Where("user_id = ?", c.Param("user_id")).Find(&logs).Error; err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, logs) } func listBooks(c *gin.Context) { var books []Book db.Preload("Author").Find(&books) c.JSON(http.StatusOK, books) }
Golang代码说明:
- 数据库初始化:连接PostgreSQL数据库并初始化GORM。
- 路由:定义创建作者、书籍、用户、借阅书籍以及获取借阅计数的路由。
- 事务处理:借书时使用事务来确保一致性。
- Preload:使用 GORM 的 Preload 来连接相关表(作者与书籍)。
- 存储过程调用:使用 db.Raw 调用自定义 PostgreSQL 函数来计算借用计数。
5. 运行API
- 运行 PostgreSQL SQL 脚本来创建表、索引、视图、函数和触发器。
-
使用
启动Golang服务器go run main.go
现在,您拥有了一个全面的Golang RESTful API,它涵盖了各种 PostgreSQL 功能,使其成为学习或面试的强大示例。
6.添加更多功能。
让我们通过合并 视图、CTE(通用表表达式)、全文索引来增强 Golang RESTful API 示例以及其他 PostgreSQL 功能 和 JSON 处理。这些功能中的每一个都将通过相关的 PostgreSQL 表定义和与它们交互的 Golang 代码进行演示。
这部分的数据架构已经在上一节中准备好了,所以我们只需要添加更多的 golang 代码即可。
mkdir library-api cd library-api go mod init library-api
特点总结:
- 视图:使用 user_borrow_history 视图简化对数据的访问,使复杂的联接更易于查询。
- CTE:使用WITH子句进行有组织的查询,例如获取活动借用日志。
- 全文索引:通过 to_tsvector 上的 GIN 索引增强书籍的搜索能力。
-
JSON 处理:
- 使用 JSONB 类型存储和更新丰富的元数据。
- getBookTags 从元数据 JSONB 列中检索特定的 JSON 字段(标签)。
- updateBookPageCount 更新或添加元数据 JSONB 列中的 page_count 字段。
通过将 db.Raw 和 db.Exec 用于 GORM 的原始 SQL,您可以利用 PostgreSQL 的强大功能,同时为应用程序的其他部分保留 GORM 的 ORM 功能。这使得该解决方案既灵活又功能丰富。
7.其他高级功能
在这个扩展示例中,我将展示如何使用 Golang 和 PostgreSQL 集成以下功能:
- VACUUM:用于回收死元组占用的存储并防止表膨胀。
- MVCC:通过维护不同版本的行来允许并发事务的概念。
- 窗口函数:用于在与当前行相关的一组表行上执行计算。
1.在Golang中使用VACUUM
VACUUM 通常用作维护任务,而不是直接来自应用程序代码。但是,您可以使用 GORM 的 Exec 来运行它以进行内务管理:
/library-api |-- db.sql |-- main.go |-- go.mod
- VACUUM ANALYZE books:回收存储并更新查询规划器为 books 表使用的统计信息。
- 运行 VACUUM 通常是在非高峰时段或作为维护脚本的一部分而不是针对每个请求运行。
2.了解MVCC(多版本并发控制)
PostgreSQL 的 MVCC 通过保留不同版本的行来允许并发事务。以下是如何使用事务在 Golang 中演示 MVCC 行为的示例:
go get github.com/gin-gonic/gin go get gorm.io/gorm go get gorm.io/driver/postgres
- FOR UPDATE:在事务期间锁定所选行的更新,防止其他事务修改它,直到当前事务完成。
- 这确保了并发访问期间的一致性,展示了 MVCC 如何允许并发读取但锁定行以进行更新。
3. 将窗口函数与 GORM 结合使用
窗口函数用于对与当前行相关的一组表行执行计算。以下是使用窗口函数计算每位作者借阅书籍的运行总数的示例:
mkdir library-api cd library-api go mod init library-api
- SUM(COUNT(bl.id)) OVER (PARTITION BY a.id ORDER BY bl.borrowed_at):一个窗口函数,计算每个作者借阅书籍的运行总数,按borrowed_at日期排序。
- 这可以提供见解,例如每个作者的借阅趋势如何随时间变化。
以上是Golang RESTful API 与 Gin、Gorm、PostgreSQL的详细内容。更多信息请关注PHP中文网其他相关文章!

在Go中,使用互斥锁和锁是确保线程安全的关键。1)使用sync.Mutex进行互斥访问,2)使用sync.RWMutex处理读写操作,3)使用原子操作进行性能优化。掌握这些工具及其使用技巧对于编写高效、可靠的并发程序至关重要。

如何优化并发Go代码的性能?使用Go的内置工具如gotest、gobench和pprof进行基准测试和性能分析。1)使用testing包编写基准测试,评估并发函数的执行速度。2)通过pprof工具进行性能分析,识别程序中的瓶颈。3)调整垃圾收集设置以减少其对性能的影响。4)优化通道操作和限制goroutine数量以提高效率。通过持续的基准测试和性能分析,可以有效提升并发Go代码的性能。

避免并发Go程序中错误处理的常见陷阱的方法包括:1.确保错误传播,2.处理超时,3.聚合错误,4.使用上下文管理,5.错误包装,6.日志记录,7.测试。这些策略有助于有效处理并发环境中的错误。

IndimitInterfaceImplementationingingoembodiesducktybybyallowingTypestoSatoSatiSatiSatiSatiSatiSatsatSatiSatplicesWithouTexpliclIctDeclaration.1)itpromotesflemotesflexibility andmodularitybybyfocusingion.2)挑战挑战InclocteSincludeUpdatingMethodSignateSignatiSantTrackingImplections.3)工具li

在Go编程中,有效管理错误的方法包括:1)使用错误值而非异常,2)采用错误包装技术,3)定义自定义错误类型,4)复用错误值以提高性能,5)谨慎使用panic和recover,6)确保错误消息清晰且一致,7)记录错误处理策略,8)将错误视为一等公民,9)使用错误通道处理异步错误。这些做法和模式有助于编写更健壮、可维护和高效的代码。

在Go中实现并发可以通过使用goroutines和channels来实现。1)使用goroutines来并行执行任务,如示例中同时享受音乐和观察朋友。2)通过channels在goroutines之间安全传递数据,如生产者和消费者模式。3)避免过度使用goroutines和死锁,合理设计系统以优化并发程序。

Gooffersmultipleapproachesforbuildingconcurrentdatastructures,includingmutexes,channels,andatomicoperations.1)Mutexesprovidesimplethreadsafetybutcancauseperformancebottlenecks.2)Channelsofferscalabilitybutmayblockiffullorempty.3)Atomicoperationsareef

go'serrorhandlingisexplicit,治疗eRROSASRETRATERTHANEXCEPTIONS,与pythonandjava.1)go'sapphifeensuresererrawaresserrorawarenessbutcanleadtoverbosecode.2)pythonandjavauseexeexceptionseforforforforforcleanerCodebutmaymobisserrors.3)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6
视觉化网页开发工具