用 Pandas DataFrame 中的列平均值替换 NaN 值
处理主要由实数填充的 DataFrame 中的缺失数据时,替换 NaN具有适当替代方案的价值观至关重要。在这种情况下,我们寻求用 NaN 值所在列的平均值来替换它们。
为了满足这一需求,pandas 提供了一种方便的方法:DataFrame.fillna。通过利用此函数,我们可以直接用列平均值填充 NaN 值:
<code class="python">df = ... # Your DataFrame with NaN values # Calculate the mean of each column column_means = df.mean() # Replace NaN values with the column averages filled_df = df.fillna(column_means)</code>
DataFrame.fillna 方法接受各种输入作为填充值,包括标量、字典或系列。在本例中,我们传递column_means,这是一个包含每列平均值的系列。
这里有一个示例来说明该过程:
<code class="python">import pandas as pd df = pd.DataFrame({ 'A': [-0.166919, -0.297953, -0.120211, NaN, NaN, -0.788073, -0.916080, -0.887858, 1.948430, 0.019698], 'B': [0.979728, -0.912674, -0.540679, -2.027325, NaN, NaN, -0.612343, 1.033826, 1.025011, -0.795876], 'C': [-0.632955, -1.365463, -0.680481, 1.533582, 0.461821, NaN, NaN, NaN, -2.982224, -0.046431] }) print(df) # Calculate the mean of each column column_means = df.mean() # Replace NaN values with the column averages filled_df = df.fillna(column_means) print(filled_df)</code>
输出:
A B C 0 -0.166919 0.979728 -0.632955 1 -0.297953 -0.912674 -1.365463 2 -0.120211 -0.540679 -0.680481 3 NaN -2.027325 1.533582 4 NaN NaN 0.461821 5 -0.788073 NaN NaN 6 -0.916080 -0.612343 NaN 7 -0.887858 1.033826 NaN 8 1.948430 1.025011 -2.982224 9 0.019698 -0.795876 -0.046431 A B C 0 -0.166919 0.979728 -0.632955 1 -0.297953 -0.912674 -1.365463 2 -0.120211 -0.540679 -0.680481 3 -0.151121 -2.027325 1.533582 4 -0.151121 -0.231291 0.461821 5 -0.788073 -0.231291 -0.530307 6 -0.916080 -0.612343 -0.530307 7 -0.887858 1.033826 -0.530307 8 1.948430 1.025011 -2.982224 9 0.019698 -0.795876 -0.046431
如图所示,NaN 值已替换为适当的列平均值,提供完整且一致的 DataFrame。
以上是如何使用'fillna”方法用列平均值替换 Pandas DataFrame 中的 NaN 值?的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

SublimeText3 Linux新版
SublimeText3 Linux最新版

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)