合并数据帧以根据匹配列追加缺失值
在给定的场景中,目标是合并两个数据帧 df1 和df2,基于名称列。然而,期望的输出是保留 df1 中的信息并用 NaN 填充 df2 中的缺失值。结果应如下所示:
Name Age Sex 0 Tom 34 M 1 Sara 18 NaN 2 Eva 44 F 3 Jack 27 M 4 Laura 30 NaN
方法 1:使用由 set_index 创建的系列映射
此方法涉及通过设置名称列从 df2 创建系列作为索引。然后,使用map()方法匹配并填充df1中的Sex值。
<code class="python">df1['Sex'] = df1['Name'].map(df2.set_index('Name')['Sex']) print(df1)</code>
方法2:使用Left Join进行合并的替代解决方案
An替代解决方案是使用左连接方法合并 df1 和 df2。这可确保保留 df1 中的所有行,并使用 NaN 填充 df2 中的缺失值。
<code class="python">df = df1.merge(df2[['Name', 'Sex']], on='Name', how='left') print(df)</code>
方法 3:使用左连接合并进行多列映射
如果需要合并多列(例如名称和年份、代码),请使用左连接合并,并指定所需的列。
<code class="python"># Merge by all columns df = df1.merge(df2, on=['Year', 'Code'], how='left') # Merge by specified columns df = df1.merge(df2[['Year', 'Code', 'Val']], on=['Year', 'Code'], how='left')</code>
处理重复键的错误
在某些情况下,可能存在重复的 Name 值,从而导致错误。要解决此问题,请考虑删除重复项或使用基于字典的映射来确保选择最后一个匹配值。
<code class="python"># Remove duplicates and create a Series for mapping s = df2.drop_duplicates('Name').set_index('Name')['Val'] df1['New'] = df1['Name'].map(s)</code>
通过使用这些方法中的任何一种,您可以有效地合并数据帧,保留来自主数据帧的信息数据框并用 NaN 填充缺失值。
以上是如何合并数据框以根据匹配列追加缺失值?的详细内容。更多信息请关注PHP中文网其他相关文章!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

记事本++7.3.1
好用且免费的代码编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能