搜索
首页后端开发Python教程如何使用 Apache Spark 对使用 OCR 从图像中提取的文本进行高效的字符串匹配和验证?

 How can Apache Spark be used for efficient string matching and verification of text extracted from images using OCR?

Apache Spark 中用于提取文本验证的高效字符串匹配

光学字符识别 (OCR) 工具在从图像中提取文本时经常会出现错误。为了有效地将这些提取的文本与参考数据集进行匹配,Spark 中需要一种高效的算法。

鉴于 OCR 提取中面临的挑战,例如字符替换、表情符号遗漏和空白删除,一种综合方法是需要。考虑到 Spark 的优势,可以利用机器学习转换器的组合来实现高效的解决方案。

管道方法

可以构建管道来执行以下步骤:

  • 标记化:使用 RegexTokenizer,将输入文本分割成最小长度的标记,考虑“I”和“|”等字符替换。
  • N-Grams:NGram 提取 n 元语法序列以捕获潜在的符号遗漏。
  • 向量化:为了促进高效的相似性测量,HashingTF 或 CountVectorizer 将 n 转换为 n -gram 转换为数值向量。
  • 局部敏感哈希 (LSH):为了近似向量之间的余弦相似度,MinHashLSH 利用局部敏感哈希。

示例实现

<code class="scala">import org.apache.spark.ml.feature.{RegexTokenizer, NGram, HashingTF, MinHashLSH, MinHashLSHModel}

// Input text
val query = Seq("Hello there 7l | real|y like Spark!").toDF("text")

// Reference data
val db = Seq(
  "Hello there ?! I really like Spark ❤️!", 
  "Can anyone suggest an efficient algorithm"
).toDF("text")

// Create pipeline
val pipeline = new Pipeline().setStages(Array(
  new RegexTokenizer().setPattern("").setInputCol("text").setMinTokenLength(1).setOutputCol("tokens"),
  new NGram().setN(3).setInputCol("tokens").setOutputCol("ngrams"),
  new HashingTF().setInputCol("ngrams").setOutputCol("vectors"),
  new MinHashLSH().setInputCol("vectors").setOutputCol("lsh")
))

// Fit on reference data
val model = pipeline.fit(db)

// Transform both input text and reference data
val db_hashed = model.transform(db)
val query_hashed = model.transform(query)

// Approximate similarity join
model.stages.last.asInstanceOf[MinHashLSHModel]
  .approxSimilarityJoin(db_hashed, query_hashed, 0.75).show</code>

这种方法有效地应对了 OCR 文本提取的挑战,并提供了一种将提取的文本与 Spark 中的大型数据集进行匹配的有效方法。

以上是如何使用 Apache Spark 对使用 OCR 从图像中提取的文本进行高效的字符串匹配和验证?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python的混合方法:编译和解释合并Python的混合方法:编译和解释合并May 08, 2025 am 12:16 AM

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

了解python的' for”和' then”循环之间的差异了解python的' for”和' then”循环之间的差异May 08, 2025 am 12:11 AM

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

Python串联列表与重复Python串联列表与重复May 08, 2025 am 12:09 AM

在Python中,可以通过多种方法连接列表并管理重复元素:1)使用 运算符或extend()方法可以保留所有重复元素;2)转换为集合再转回列表可以去除所有重复元素,但会丢失原有顺序;3)使用循环或列表推导式结合集合可以去除重复元素并保持原有顺序。

Python列表串联性能:速度比较Python列表串联性能:速度比较May 08, 2025 am 12:09 AM

fasteStmethodMethodMethodConcatenationInpythondependersonListsize:1)forsmalllists,operatorseffited.2)forlargerlists,list.extend.extend()orlistComprechensionfaster,withextendEffaster,withExtendEffers,withextend()withextend()是extextend()asmoremory-ememory-emmoremory-emmoremory-emmodifyinginglistsin-place-place-place。

您如何将元素插入python列表中?您如何将元素插入python列表中?May 08, 2025 am 12:07 AM

toInSerteLementIntoApythonList,useAppend()toaddtotheend,insert()foreSpificPosition,andextend()formultiplelements.1)useappend()foraddingsingleitemstotheend.2)useAddingsingLeitemStotheend.2)useeapecificindex,toadapecificindex,toadaSpecificIndex,toadaSpecificIndex,blyit'ssssssslorist.3 toaddextext.3

Python是否列表动态阵列或引擎盖下的链接列表?Python是否列表动态阵列或引擎盖下的链接列表?May 07, 2025 am 12:16 AM

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

如何从python列表中删除元素?如何从python列表中删除元素?May 07, 2025 am 12:15 AM

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

试图运行脚本时,应该检查是否会遇到'权限拒绝”错误?试图运行脚本时,应该检查是否会遇到'权限拒绝”错误?May 07, 2025 am 12:12 AM

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。