以下是一些标题选项,每个标题都强调文章的不同方面: 选项 1:重点关注概念和 C 11 功能: * C 11 中的 ScopeGuard:简单的错误处理,但有哪些注意事项
最简单、最简洁的 C 11 ScopeGuard
在 C 11 中,有一个简单的习惯用法可以实现 ScopeGuard,从而简化错误和资源处理。下面是一个简单的解释和实现:
概念:
ScopeGuard 是一个 C 类,它提供了一种定义代码块的方法,当创建守卫的范围退出。这样可以轻松进行清理和错误处理,确保即使在特殊情况下也能释放资源或采取操作。
实现:
<code class="cpp">namespace RAII { template class ScopeGuard { mutable bool committed; Lambda rollbackLambda; public: ScopeGuard( const Lambda& _l) : committed(false) , rollbackLambda(_l) {} template ScopeGuard( const AdquireLambda& _al , const Lambda& _l) : committed(false) , rollbackLambda(_l) { _al(); } ~ScopeGuard() { if (!committed) rollbackLambda(); } inline void commit() const { committed = true; } }; template const ScopeGuard& makeScopeGuard( const aLambda& _a , const rLambda& _r) { return ScopeGuard( _a , _r ); } template<typename rlambda> const ScopeGuard& makeScopeGuard(const rLambda& _r) { return ScopeGuard(_r ); } }</typename></code>
使用:
<code class="cpp">void SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptions() { std::vector<int> myVec; std::vector<int> someOtherVec; myVec.push_back(5); //first constructor, adquire happens elsewhere const auto& a = RAII::makeScopeGuard( [&]() { myVec.pop_back(); } ); //sintactically neater, since everything happens in a single line const auto& b = RAII::makeScopeGuard( [&]() { someOtherVec.push_back(42); } , [&]() { someOtherVec.pop_back(); } ); b.commit(); a.commit(); }</int></int></code>
在此示例中,ScopeGuard 习惯用法用于确保即使在函数范围内引发异常,也会执行清理操作(从向量中弹出元素)。
简单性和局限性:
ScopeGuard 习惯用法的这种实现相对简单和简洁,使其易于使用和理解。然而,原问题的作者也对潜在的缺陷或缺失的专业提出了担忧。让我们解决这些问题:
- 完美转发: 该实现并未充分利用 C 11 完美转发技术。这在 makeScopeGuard 函数中很明显,该函数使用左值引用而不是 lambda 参数的通用引用。使用通用引用将提供更大的灵活性并支持右值 lambda。
- 如果获取抛出异常则回滚: 原始实现不处理“获取”lambda 抛出异常的情况。如果获取 lambda 失败,则永远不会调用回滚 lambda,从而使代码处于不一致的状态。
为了解决这些问题,以下是 ScopeGuard 实现和用法的更新版本:
<code class="cpp">namespace RAII { template class ScopeGuard { bool committed; Lambda rollbackLambda; public: ScopeGuard( const Lambda& _l) : committed(false) , rollbackLambda(_l) {} ScopeGuard( const ScopeGuard& _sc) : committed(false) , rollbackLambda(_sc.rollbackLambda) { if (_sc.committed) committed = true; else _sc.commit(); } ScopeGuard( ScopeGuard&& _sc) : committed(false) , rollbackLambda(_sc.rollbackLambda) { if (_sc.committed) committed = true; else _sc.commit(); } //WARNING: only safe if adquire lambda does not throw, otherwise release lambda is never invoked, because the scope guard never finished initialistion.. template ScopeGuard( const AdquireLambda& _al , const Lambda& _l) : committed(false) , rollbackLambda(_l) { std::forward<adquirelambda>(_al)(); } //WARNING: only safe if adquire lambda does not throw, otherwise release lambda is never invoked, because the scope guard never finished initialistion.. template ScopeGuard( AdquireLambda&& _al , L&& _l) : committed(false) , rollbackLambda(std::forward<l>(_l)) { std::forward<adquirelambda>(_al)(); // just in case the functor has &&-qualified operator() } ~ScopeGuard() { if (!committed) rollbackLambda(); } inline void commit() { committed = true; } }; //WARNING: only safe if adquire lambda does not throw, otherwise release lambda is never invoked, because the scope guard never finished initialistion.. template ScopeGuard // return by value is the preferred C++11 way. makeScopeGuardThatDoesNOTRollbackIfAdquireThrows( aLambda&& _a , rLambda&& _r) // again perfect forwarding { return ScopeGuard( std::forward<alambda>(_a) , std::forward<rlambda>(_r )); // *** no longer UB, because we're returning by value } template ScopeGuard // return by value is the preferred C++11 way. makeScopeGuardThatDoesRollbackIfAdquireThrows( aLambda&& _a , rLambda&& _r) // again perfect forwarding { auto scope = ScopeGuard(std::forward<rlambda>(_r )); // *** no longer UB, because we're returning by value _a(); return scope; } template<typename rlambda> ScopeGuard makeScopeGuard(rLambda&& _r) { return ScopeGuard( std::forward<rlambda>(_r )); } namespace basic_usage { struct Test { std::vector<int> myVec; std::vector<int> someOtherVec; bool shouldThrow; void run() { shouldThrow = true; try { SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesNOTRollbackIfAdquireThrows(); } catch (...) { AssertMsg( myVec.size() == 0 && someOtherVec.size() == 0 , "rollback did not work"); } shouldThrow = false; SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesNOTRollbackIfAdquireThrows(); AssertMsg( myVec.size() == 1 && someOtherVec.size() == 1 , "unexpected end state"); shouldThrow = true; myVec.clear(); someOtherVec.clear(); try { SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesRollbackIfAdquireThrows(); } catch (...) { AssertMsg( myVec.size() == 0 && someOtherVec.size() == 0 , "rollback did not work"); } } void SomeFuncThatShouldBehaveAtomicallyInCaseOfExceptionsUsingScopeGuardsThatDoesNOTRollbackIfAdquireThrows() //throw() { myVec.push_back(42);</int></int></rlambda></typename></rlambda></rlambda></alambda></adquirelambda></l></adquirelambda></code>
以上是以下是一些标题选项,每个标题都强调文章的不同方面: 选项 1:重点关注概念和 C 11 功能: * C 11 中的 ScopeGuard:简单的错误处理,但有哪些注意事项的详细内容。更多信息请关注PHP中文网其他相关文章!

在C 中处理XML数据可以使用TinyXML、Pugixml或libxml2库。1)解析XML文件:使用DOM或SAX方法,DOM适合小文件,SAX适合大文件。2)生成XML文件:将数据结构转换为XML格式并写入文件。通过这些步骤,可以有效地管理和操作XML数据。

在C 中处理XML数据结构可以使用TinyXML或pugixml库。1)使用pugixml库解析和生成XML文件。2)处理复杂的嵌套XML元素,如书籍信息。3)优化XML处理代码,建议使用高效库和流式解析。通过这些步骤,可以高效处理XML数据。

C 在性能优化方面仍然占据主导地位,因为其低级内存管理和高效执行能力使其在游戏开发、金融交易系统和嵌入式系统中不可或缺。具体表现为:1)在游戏开发中,C 的低级内存管理和高效执行能力使得它成为游戏引擎开发的首选语言;2)在金融交易系统中,C 的性能优势确保了极低的延迟和高吞吐量;3)在嵌入式系统中,C 的低级内存管理和高效执行能力使得它在资源有限的环境中非常受欢迎。

C XML框架的选择应基于项目需求。1)TinyXML适合资源受限环境,2)pugixml适用于高性能需求,3)Xerces-C 支持复杂的XMLSchema验证,选择时需考虑性能、易用性和许可证。

C#适合需要开发效率和类型安全的项目,而C 适合需要高性能和硬件控制的项目。 1)C#提供垃圾回收和LINQ,适用于企业应用和Windows开发。 2)C 以高性能和底层控制着称,广泛用于游戏和系统编程。

C 代码优化可以通过以下策略实现:1.手动管理内存以优化使用;2.编写符合编译器优化规则的代码;3.选择合适的算法和数据结构;4.使用内联函数减少调用开销;5.应用模板元编程在编译时优化;6.避免不必要的拷贝,使用移动语义和引用参数;7.正确使用const帮助编译器优化;8.选择合适的数据结构,如std::vector。

C 中的volatile关键字用于告知编译器变量值可能在代码控制之外被改变,因此不能对其进行优化。1)它常用于读取可能被硬件或中断服务程序修改的变量,如传感器状态。2)volatile不能保证多线程安全,应使用互斥锁或原子操作。3)使用volatile可能导致性能slight下降,但确保程序正确性。

在C 中测量线程性能可以使用标准库中的计时工具、性能分析工具和自定义计时器。1.使用库测量执行时间。2.使用gprof进行性能分析,步骤包括编译时添加-pg选项、运行程序生成gmon.out文件、生成性能报告。3.使用Valgrind的Callgrind模块进行更详细的分析,步骤包括运行程序生成callgrind.out文件、使用kcachegrind查看结果。4.自定义计时器可灵活测量特定代码段的执行时间。这些方法帮助全面了解线程性能,并优化代码。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Dreamweaver CS6
视觉化网页开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3汉化版
中文版,非常好用

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。