将大型 Pandas 数据帧分割成相等的部分
在 Pandas 中处理大型数据集时,通常需要将它们分成更小的块处理或分析。分割数据帧的一种常用方法是 np.split,它将数据沿指定轴分布到相等数量的数组中。但是,尝试使用此方法拆分奇数行可能会导致 ValueError。
使用 np.array_split 的替代方法
要解决此问题,请考虑使用改为 np.array_split。此函数允许对数据帧进行不等划分,如以下 Python 代码所示:
<code class="python">import pandas as pd import numpy as np df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], 'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], 'C' : np.random.randn(8), 'D' : np.random.randn(8)}) print(df) split_data = np.array_split(df, 4) for part in split_data: print(part)</code>
此代码的输出显示数据帧被分成四个相等的部分:
A B C D 0 foo one -0.174067 -0.608579 1 bar one -0.860386 -1.210518 2 foo two 0.614102 1.689837 3 bar three -0.284792 -1.071160 4 foo two 0.843610 0.803712 5 bar two -1.514722 0.870861 6 foo one 0.131529 -0.968151 7 foo three -1.002946 -0.257468 A B C D 0 foo one -0.174067 -0.608579 1 bar one -0.860386 -1.210518 2 foo two 0.614102 1.689837 3 bar three -0.284792 -1.071160 4 foo two 0.843610 0.803712 5 bar two -1.514722 0.870861 A B C D 0 foo one 0.131529 -0.968151 1 foo three -1.002946 -0.257468 A B C D 0 bar one -0.860386 -1.210518 1 foo two 0.614102 1.689837 2 bar three -0.284792 -1.071160 3 foo two 0.843610 0.803712 4 bar two -1.514722 0.870861
使用 np.array_split 可确保数据帧行的均匀分布,无论其总计数如何。这提供了一种将大型数据集分割成可管理的块以进行进一步处理的便捷方法。
以上是当行数不能被部分数整除时,如何将大型 Pandas DataFrame 分成相等的部分?的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

记事本++7.3.1
好用且免费的代码编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。