


对大型 Pandas 数据帧进行切片
问题:
尝试通过函数导致内存错误,表明数据帧大小过大。目标是:
- 将数据帧分成更小的段。
- 迭代函数内的更小的块。
- 将处理后的段合并到单个数据帧中。
解决方案:
按行数切片
可以使用 list 来完成按固定行数的分割来自 numpy 的理解或 array_split:
<code class="python">n = 200000 # Chunk row size list_df = [df[i:i + n] for i in range(0, df.shape[0], n)]</code>
<code class="python">list_df = np.array_split(df, math.ceil(len(df) / n))</code>
按 AcctName 切片
按特定列值进行切片,例如 AcctName:
<code class="python">list_df = [] for n, g in df.groupby('AcctName'): list_df.append(g)</code>
合并
大数据帧被切片后,可以使用 pd.concat 重新组装:
<code class="python">consolidated_df = pd.concat(list_df)</code>
以上是以下是一些标题选项,每个标题选项都强调解决方案的不同方面: 聚焦问题: * 如何在没有内存错误的情况下处理大型 Pandas DataFrame? * Pandas 中的内存错误:的详细内容。更多信息请关注PHP中文网其他相关文章!

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

在使用Python的pandas库时,如何在两个结构不同的DataFrame之间进行整列复制是一个常见的问题。假设我们有两个Dat...

文章讨论了虚拟环境在Python中的作用,重点是管理项目依赖性并避免冲突。它详细介绍了他们在改善项目管理和减少依赖问题方面的创建,激活和利益。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

记事本++7.3.1
好用且免费的代码编辑器

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中