使用公共列上的 Merge 组合 Pandas 数据框
在处理数据分析任务时,通常需要将来自多个源的数据组合到单个数据框中。 Pandas 提供了多种执行数据框连接的方法,其中之一是 merge(),它使我们能够基于公共列组合数据框。
假设我们有两个数据框:
restaurant_ids_dataframe:
Column Name | Data Type |
---|---|
business_id | int |
categories | object |
city | object |
full_address | object |
latitude | float |
longitude | float |
name | object |
neighborhoods | object |
open | bool |
review_count | int |
stars | float |
state | object |
type | object |
restaurant_review_frame:
Column Name | Data Type |
---|---|
business_id | int |
date | object |
review_id | int |
stars | float |
text | object |
type | object |
user_id | int |
votes | int |
目标是使用 DataFrame.join 将这些数据帧组合成单个数据帧() 方法。我们通常期望在公共列business_id 上执行联接。但是,当尝试以下代码行时:
restaurant_review_frame.join(other=restaurant_ids_dataframe, on='business_id', how='left')
我们收到错误:
Exception: columns overlap: Index([business_id, stars, type], dtype=object)
要解决此问题,我们应该使用 merge() 方法,并指定on 参数中的公共列。 merge() 方法旨在处理重叠列并相应地组合数据帧。语法为:
<code class="python">import pandas as pd pd.merge(restaurant_ids_dataframe, restaurant_review_frame, on='business_id', how='outer')</code>
这里,how 参数定义要执行的连接类型。在本例中,我们使用了 external,它执行完整的外连接,组合两个数据帧中的所有行。
此外,我们可以使用 suffixes 参数指定合并列的后缀,从而允许我们自定义结果数据框中的列名称。例如,要将列后缀为 star_restaurant_id 和 star_restaurant_review,我们可以使用:
<code class="python">pd.merge(restaurant_ids_dataframe, restaurant_review_frame, on='business_id', how='outer', suffixes=('_restaurant_id', '_restaurant_review'))</code>
merge() 方法提供了一组全面的参数,可以对连接操作提供细粒度的控制,从而实现高效且准确的数据框组合。
以上是如何解决将 Pandas 数据框与'join()”组合时出现的列重叠错误?的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。