从 Scikit-Learn 决策树中提取决策规则
在机器学习中,决策树通常用于捕获决策过程决策规则的形式。这些规则可以表示为文本列表,让您清楚地了解决策树中的底层逻辑。
以编程方式提取决策规则
Python 函数 tree_to_code 可以实现从经过训练的决策树中提取决策规则。它将经过训练的树和特征名称列表作为输入,并生成一个表示决策规则的有效 Python 函数。
<code class="python">def tree_to_code(tree, feature_names): # ...</code>
生成的函数与决策树具有相同的结构,使用嵌套 if -else 语句代表决策路径。提供输入数据后,该函数将返回相应的输出。
示例输出
对于尝试返回其输入(0 到 10 之间的数字)的决策树),生成的代码可能如下所示:
<code class="python">def tree(f0): if f0 <= 6.0: if f0 <= 1.5: return [[ 0.]] else: # if f0 > 1.5 if f0 <= 4.5: if f0 <= 3.5: return [[ 3.]] else: # if f0 > 3.5 return [[ 4.]] else: # if f0 > 4.5 return [[ 5.]] else: # if f0 > 6.0 if f0 <= 8.5: if f0 <= 7.5: return [[ 7.]] else: # if f0 > 7.5 return [[ 8.]] else: # if f0 > 8.5 return [[ 9.]]</code>
其他方法的局限性
从决策树中提取决策规则的一些常见陷阱包括:
以上是我们如何以编程方式从 Scikit-Learn 决策树中提取决策规则,同时避免常见陷阱?的详细内容。更多信息请关注PHP中文网其他相关文章!