Q-Learning 值超出阈值
在尝试实施 Q-Learning 时,出现了状态操作值超出阈值的问题双精度浮点变量的限制。最初的实现将此问题归因于使用了 agent.prevState 而不是状态-操作元组。然而,根本原因被确定为 prevScore 的计算。
理解问题
Q-Learning 根据以下值更新 Q(s, a) 的值公式:
Q(s, a) = Q(s, a) + (LearningRate * (prevScore + (DiscountFactor * reward) - Q(s, a)))
关键的一点是 prevScore 代表前一个状态动作的奖励,而不是 Q 值。在最初的实现中,prevScore 包含了上一步的 Q 值,而不是奖励本身,导致值膨胀超出了浮点限制。
分辨率
通过修改 prevScore 以保留上一步的真实奖励,学习过程按预期进行。 2M 集后的最大值显着降低,模型在游戏过程中表现出合理的行为。
奖励的作用
值得注意奖励函数的影响在强化学习中。目标是最大化预期总奖励。如果每个时间步都给予奖励,算法将有利于延长游戏,导致 Q 值过高。在此示例中,为每个时间步引入负奖励会鼓励智能体以胜利为目标,从而将 Q 值控制在适当的范围内。
以上是为什么我的 Q-Learning 价值观呈爆炸式增长?夸大的奖励和浮点限制的故事。的详细内容。更多信息请关注PHP中文网其他相关文章!

C 更适合需要直接控制硬件资源和高性能优化的场景,而Golang更适合需要快速开发和高并发处理的场景。1.C 的优势在于其接近硬件的特性和高度的优化能力,适合游戏开发等高性能需求。2.Golang的优势在于其简洁的语法和天然的并发支持,适合高并发服务开发。

Golang在实际应用中表现出色,以简洁、高效和并发性着称。 1)通过Goroutines和Channels实现并发编程,2)利用接口和多态编写灵活代码,3)使用net/http包简化网络编程,4)构建高效并发爬虫,5)通过工具和最佳实践进行调试和优化。

Go语言的核心特性包括垃圾回收、静态链接和并发支持。1.Go语言的并发模型通过goroutine和channel实现高效并发编程。2.接口和多态性通过实现接口方法,使得不同类型可以统一处理。3.基本用法展示了函数定义和调用的高效性。4.高级用法中,切片提供了动态调整大小的强大功能。5.常见错误如竞态条件可以通过gotest-race检测并解决。6.性能优化通过sync.Pool重用对象,减少垃圾回收压力。

Go语言在构建高效且可扩展的系统中表现出色,其优势包括:1.高性能:编译成机器码,运行速度快;2.并发编程:通过goroutines和channels简化多任务处理;3.简洁性:语法简洁,降低学习和维护成本;4.跨平台:支持跨平台编译,方便部署。

关于SQL查询结果排序的疑惑学习SQL的过程中,常常会遇到一些令人困惑的问题。最近,笔者在阅读《MICK-SQL基础�...

golang ...

Go语言中如何对比并处理三个结构体在Go语言编程中,有时需要对比两个结构体的差异,并将这些差异应用到第�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3汉化版
中文版,非常好用

WebStorm Mac版
好用的JavaScript开发工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器