首页 >web前端 >js教程 >尽管浏览器渲染优化会导致效果不佳,但如何使用 HTML5 画布实现高质量图像缩小?

尽管浏览器渲染优化会导致效果不佳,但如何使用 HTML5 画布实现高质量图像缩小?

Susan Sarandon
Susan Sarandon原创
2024-10-25 12:47:02635浏览

How can I achieve high-quality image downscaling using HTML5 canvas, despite browser rendering optimizations leading to poor results?

HTML5 Canvas:以高质量缩小图像

问题:使用 HTML5 canvas 缩小图像会导致低质量尽管启用了图像渲染优化,但仍然输出。

解决方案:

缩小 HTML5 画布中的图像涉及将原始图像中的多个像素转换为缩放图像中的单个像素。浏览器中常见的缩小技术处理此过程效率低下,导致细节和噪声丢失。

要实现高质量的缩小,请考虑使用像素完美算法来准确计算所有源像素对目标的贡献

算法:

<code class="javascript">// scales the canvas by (float) scale < 1
// returns a new canvas containing the scaled image.
function downScaleCanvas(cv, scale) {
    if (!(scale < 1) || !(scale > 0)) 
        throw ('scale must be a positive number <1 ');

    var sqScale = scale * scale; // square scale = area of source pixel within target
    var sw = cv.width; // source image width
    var sh = cv.height; // source image height
    var tw = Math.floor(sw * scale); // target image width
    var th = Math.floor(sh * scale); // target image height
    var sx = 0, sy = 0, sIndex = 0; // source x,y, index within source array
    var tx = 0, ty = 0, yIndex = 0, tIndex = 0; // target x,y, x,y index within target array
    var tX = 0, tY = 0; // rounded tx, ty
    var w = 0, nw = 0, wx = 0, nwx = 0, wy = 0, nwy = 0; // weight / next weight x / y
    // weight is weight of current source point within target.
    // next weight is weight of current source point within next target's point.
    var crossX = false; // does scaled px cross its current px right border ?
    var crossY = false; // does scaled px cross its current px bottom border ?
    var sBuffer = cv.getContext('2d').
        getImageData(0, 0, sw, sh).data; // source buffer 8 bit rgba
    var tBuffer = new Float32Array(3 * tw * th); // target buffer Float32 rgb
    var sR = 0, sG = 0,  sB = 0; // source's current point r,g,b

    for (sy = 0; sy < sh; sy++) {
        ty = sy * scale; // y src position within target
        tY = 0 | ty;     // rounded : target pixel's y
        yIndex = 3 * tY * tw;  // line index within target array
        crossY = (tY != (0 | ty + scale)); 
        if (crossY) { // if pixel is crossing botton target pixel
            wy = (tY + 1 - ty); // weight of point within target pixel
            nwy = (ty + scale - tY - 1); // ... within y+1 target pixel
        }
        for (sx = 0; sx < sw; sx++, sIndex += 4) {
            tx = sx * scale; // x src position within target
            tX = 0 |  tx;    // rounded : target pixel's x
            tIndex = yIndex + tX * 3; // target pixel index within target array
            crossX = (tX != (0 | tx + scale));
            if (crossX) { // if pixel is crossing target pixel's right
                wx = (tX + 1 - tx); // weight of point within target pixel
                nwx = (tx + scale - tX - 1); // ... within x+1 target pixel
            }
            sR = sBuffer[sIndex    ];   // retrieving r,g,b for curr src px.
            sG = sBuffer[sIndex + 1];
            sB = sBuffer[sIndex + 2];

            if (!crossX && !crossY) { // pixel does not cross
                // just add components weighted by squared scale.
                tBuffer[tIndex    ] += sR * sqScale;
                tBuffer[tIndex + 1] += sG * sqScale;
                tBuffer[tIndex + 2] += sB * sqScale;
            } else if (crossX && !crossY) { // cross on X only
                w = wx * scale;
                // add weighted component for current px
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // add weighted component for next (tX+1) px                
                nw = nwx * scale
                tBuffer[tIndex + 3] += sR * nw;
                tBuffer[tIndex + 4] += sG * nw;
                tBuffer[tIndex + 5] += sB * nw;
            } else if (crossY && !crossX) { // cross on Y only
                w = wy * scale;
                // add weighted component for current px
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // add weighted component for next (tY+1) px                
                nw = nwy * scale
                tBuffer[tIndex + 3 * tw    ] += sR * nw;
                tBuffer[tIndex + 3 * tw + 1] += sG * nw;
                tBuffer[tIndex + 3 * tw + 2] += sB * nw;
            } else { // crosses both x and y : four target points involved
                // add weighted component for current px
                w = wx * wy;
                tBuffer[tIndex    ] += sR * w;
                tBuffer[tIndex + 1] += sG * w;
                tBuffer[tIndex + 2] += sB * w;
                // for tX + 1; tY px
                nw = nwx * wy;
                tBuffer[tIndex + 3] += sR * nw;
                tBuffer[tIndex + 4] += sG * nw;
                tBuffer[tIndex + 5] += sB * nw;
                // for tX ; tY + 1 px
                nw = wx * nwy;
                tBuffer[tIndex + 3 * tw    ] += sR * nw;
                tBuffer[tIndex + 3 * tw + 1] += sG * nw;
                tBuffer[tIndex + 3 * tw + 2] += sB * nw;
                // for tX + 1 ; tY +1 px
                nw = nwx * nwy;
                tBuffer[tIndex + 3 * tw + 3] += sR * nw;
                tBuffer[tIndex + 3 * tw + 4] += sG * nw;
                tBuffer[tIndex + 3 * tw + 5] += sB * nw;
            }
        } // end for sx 
    } // end for sy

    // create result canvas
    var resCV = document.createElement('canvas');
    resCV.width = tw;
    resCV.height = th;
    var resCtx = resCV.getContext('2d');
    var imgRes = resCtx.getImageData(0, 0, tw, th);
    var tByteBuffer = imgRes.data;
    // convert float32 array into a UInt8Clamped Array
    var pxIndex = 0; //  
    for (sIndex = 0, tIndex = 0; pxIndex < tw * th; sIndex += 3, tIndex += 4, pxIndex++) {
        tByteBuffer[tIndex] = Math.ceil(tBuffer[sIndex]);
        tByteBuffer[tIndex + 1] = Math.ceil(tBuffer[sIndex + 1]);
        tByteBuffer[tIndex + 2] = Math.ceil(tBuffer[sIndex + 2]);
        tByteBuffer[tIndex + 3] = 255;
    }
    // writing result to canvas.
    resCtx.putImageData(imgRes, 0, 0);
    return resCV;
}</code>

附加说明:

  • 上采样也可以通过使用大于 1 的比例来实现相同的算法。
  • 该算法占用大量内存,可能不适合非常大的图像或实时应用程序。
  • 适用于较小的图像或非关键用途在这种情况下,使用浏览器默认的 2X 比例或应用双线性插值等更简单的方法可能就足够了。

以上是尽管浏览器渲染优化会导致效果不佳,但如何使用 HTML5 画布实现高质量图像缩小?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn