在 Pandas Dataframe 中拆分元组的列
在 Pandas Dataframe 中,经常会遇到包含元组的列,例如提供的示例:
<code class="python">>>> d1 y norm test y norm train len(y_train) len(y_test) \ 0 64.904368 116.151232 1645 549 1 70.852681 112.639876 1645 549 SVR RBF \ 0 (35.652207342877873, 22.95533537448393) 1 (39.563683797747622, 27.382483096332511) LCV \ 0 (19.365430594452338, 13.880062435173587) 1 (19.099614489458364, 14.018867136617146) RIDGE CV \ 0 (4.2907610988480362, 12.416745648065584) 1 (4.18864306788194, 12.980833914392477) RF \ 0 (9.9484841581029428, 16.46902345373697) 1 (10.139848213735391, 16.282141345406522) GB \ 0 (0.012816232716538605, 15.950164822266007) 1 (0.012814519804493328, 15.305745202851712) ET DATA 0 (0.00034337162272515505, 16.284800366214057) j2m 1 (0.00024811554516431878, 15.556506191784194) j2m</code>
要将这些列拆分为元组中每个元素的单独列,您可以使用以下技术:
<code class="python"># Convert column to list of tuples col_to_split = df['column_name'].tolist() # Create a new dataframe from the list of tuples split_col = pd.DataFrame(col_to_split, index=df.index) # Assign new columns to original dataframe df[['column_name_a', 'column_name_b']] = split_col</code>
例如,在提供的数据框中,您可以将 LCV 列拆分为 LCV- a 和 LCV-b 列:
<code class="python">d1[['LCV-a', 'LCV-b']] = pd.DataFrame(d1['LCV'].tolist(), index=d1.index)</code>
这将产生以下数据框:
<code class="python">>>> d1 y norm test y norm train len(y_train) len(y_test) \ 0 64.904368 116.151232 1645 549 1 70.852681 112.639876 1645 549 SVR RBF \ 0 (35.652207342877873, 22.95533537448393) 1 (39.563683797747622, 27.382483096332511) LCV-a LCV-b 0 (19.365430594452338, 13.880062435173587) None 1 (19.099614489458364, 14.018867136617146) None RIDGE CV \ 0 (4.2907610988480362, 12.416745648065584) 1 (4.18864306788194, 12.980833914392477) RF \ 0 (9.9484841581029428, 16.46902345373697) 1 (10.139848213735391, 16.282141345406522) GB \ 0 (0.012816232716538605, 15.950164822266007) 1 (0.012814519804493328, 15.305745202851712) ET DATA 0 (0.00034337162272515505, 16.284800366214057) j2m 1 (0.00024811554516431878, 15.556506191784194) j2m</code>
以上是如何将 Pandas Dataframe 列中的元组拆分为单独的列?的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1
功能强大的PHP集成开发环境

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。