搜索
首页后端开发Python教程如何构建适用于 Windows、Linux 和 macOS 的 Python 条码扫描器

条形码扫描已成为从零售、物流到医疗保健等各个行业的必备工具。在桌面平台上,它可以快速捕获和处理信息,无需手动输入数据,从而节省时间并减少错误。在本教程中,我们将通过构建适用于 WindowsLinuxPython 条码扫描器,继续探索 Dynamsoft Capture Vision SDK 的功能和 macOS

macOS 上的 Python 条码扫描仪演示

先决条件

  • Dynamsoft Capture Vision 试用许可证:获取 Dynamsoft Capture Vision SDK 的 30 天试用许可证密钥。

  • Python 包:使用以下命令安装所需的 Python 包:

    pip install dynamsoft-capture-vision-bundle opencv-python
    

    这些包有什么用?

    • dynamsoft-capture-vision-bundle 是适用于 Python 的 Dynamsoft Capture Vision SDK。
    • opencv-python 捕获相机帧并显示处理后的图像结果。

从静态图像中读取条形码

由于 Dynamsoft Capture Vision SDK 是一个集成了各种图像处理任务的统一框架,因此我们可以通过将 PresetTemplate 名称传递给 capture() 方法来轻松切换图像处理模式。

Dynamsoft Capture Vision SDK 内置模板

以下代码片段显示了 Dynamsoft Capture Vision SDK 中的内置 PresetTemplate 枚举:

class EnumPresetTemplate(Enum):
    PT_DEFAULT = _DynamsoftCaptureVisionRouter.getPT_DEFAULT()
    PT_READ_BARCODES = _DynamsoftCaptureVisionRouter.getPT_READ_BARCODES()
    PT_RECOGNIZE_TEXT_LINES = _DynamsoftCaptureVisionRouter.getPT_RECOGNIZE_TEXT_LINES()
    PT_DETECT_DOCUMENT_BOUNDARIES = (
        _DynamsoftCaptureVisionRouter.getPT_DETECT_DOCUMENT_BOUNDARIES()
    )
    PT_DETECT_AND_NORMALIZE_DOCUMENT = (
        _DynamsoftCaptureVisionRouter.getPT_DETECT_AND_NORMALIZE_DOCUMENT()
    )
    PT_NORMALIZE_DOCUMENT = _DynamsoftCaptureVisionRouter.getPT_NORMALIZE_DOCUMENT()
    PT_READ_BARCODES_SPEED_FIRST = (
        _DynamsoftCaptureVisionRouter.getPT_READ_BARCODES_SPEED_FIRST()
    )
    PT_READ_BARCODES_READ_RATE_FIRST = (
        _DynamsoftCaptureVisionRouter.getPT_READ_BARCODES_READ_RATE_FIRST()
    )
    PT_READ_SINGLE_BARCODE = _DynamsoftCaptureVisionRouter.getPT_READ_SINGLE_BARCODE()
    PT_RECOGNIZE_NUMBERS = _DynamsoftCaptureVisionRouter.getPT_RECOGNIZE_NUMBERS()
    PT_RECOGNIZE_LETTERS = _DynamsoftCaptureVisionRouter.getPT_RECOGNIZE_LETTERS()
    PT_RECOGNIZE_NUMBERS_AND_LETTERS = (
        _DynamsoftCaptureVisionRouter.getPT_RECOGNIZE_NUMBERS_AND_LETTERS()
    )
    PT_RECOGNIZE_NUMBERS_AND_UPPERCASE_LETTERS = (
        _DynamsoftCaptureVisionRouter.getPT_RECOGNIZE_NUMBERS_AND_UPPERCASE_LETTERS()
    )
    PT_RECOGNIZE_UPPERCASE_LETTERS = (
        _DynamsoftCaptureVisionRouter.getPT_RECOGNIZE_UPPERCASE_LETTERS()
    )

PT_DEFAULT 模板支持多种任务,包括文档检测、机读区识别和条形码检测。要专门优化条形码检测的性能,请将模板设置为 EnumPresetTemplate.PT_READ_BARCODES.value。

用于条形码检测的Python代码

参考之前的文档检测和机读区识别示例,可以使用以下代码从静态图像中读取条形码:

import sys
from dynamsoft_capture_vision_bundle import *
import os
import cv2
import numpy as np
from utils import *

if __name__ == '__main__':

    print("**********************************************************")
    print("Welcome to Dynamsoft Capture Vision - Barcode Sample")
    print("**********************************************************")

    error_code, error_message = LicenseManager.init_license(
        "LICENSE-KEY")
    if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED:
        print("License initialization failed: ErrorCode:",
              error_code, ", ErrorString:", error_message)
    else:
        cvr_instance = CaptureVisionRouter()
        while (True):
            image_path = input(
                ">> Input your image full path:\n"
                ">> 'Enter' for sample image or 'Q'/'q' to quit\n"
            ).strip('\'"')

            if image_path.lower() == "q":
                sys.exit(0)

            if image_path == "":
                image_path = "../../../images/multi.png"

            if not os.path.exists(image_path):
                print("The image path does not exist.")
                continue
            result = cvr_instance.capture(
                image_path, EnumPresetTemplate.PT_READ_BARCODES.value)
            if result.get_error_code() != EnumErrorCode.EC_OK:
                print("Error:", result.get_error_code(),
                      result.get_error_string())
            else:
                cv_image = cv2.imread(image_path)

                items = result.get_items()
                print('Found {} barcodes.'.format(len(items)))
                for item in items:
                    format_type = item.get_format()
                    text = item.get_text()
                    print("Barcode Format:", format_type)
                    print("Barcode Text:", text)

                    location = item.get_location()
                    x1 = location.points[0].x
                    y1 = location.points[0].y
                    x2 = location.points[1].x
                    y2 = location.points[1].y
                    x3 = location.points[2].x
                    y3 = location.points[2].y
                    x4 = location.points[3].x
                    y4 = location.points[3].y
                    del location

                    cv2.drawContours(
                        cv_image, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2)

                    cv2.putText(cv_image, text, (x1, y1 - 10),
                                cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

                cv2.imshow(
                    "Original Image with Detected Barcodes", cv_image)
                cv2.waitKey(0)
                cv2.destroyAllWindows()

    input("Press Enter to quit...")

注意:将 LICENSE-KEY 替换为您的有效许可证密钥。

使用多条形码图像测试 Python 条形码阅读器

从单个图像中解码多个条形码是零售和物流中的常见用例。下图包含多个不同格式的条形码:

How to Build a Python Barcode Scanner for Windows, Linux, and macOS

使用网络摄像头进行实时多条形码检测

当从图像文件中读取条形码时,我们在主线程中调用 capture() 方法。然而,为了处理来自网络摄像头的实时视频流,需要采用不同的方法来避免阻塞主线程。 Dynamsoft Capture Vision SDK 提供了一种内置机制,用于处理实时视频帧并在本机 C 工作线程上异步处理它们。要实现此目的,请扩展 ImageSourceAdapter 和 CapturedResultReceiver 类来分别处理图像数据和捕获的结果,然后调用 start_capturing() 方法开始处理视频流。

pip install dynamsoft-capture-vision-bundle opencv-python

说明

  • FrameFetcher 类实现 ImageSourceAdapter 接口,将帧数据送入内置缓冲区。
  • MyCapturedResultReceiver 类实现了 CapturedResultReceiver 接口。 on_captured_result_received 方法在本机 C 工作线程上运行,并将 CapturedResult 对象发送到主线程,并将它们存储在线程安全队列中以供进一步使用。
  • CapturedResult 包含多个 CapturedResultItem 对象。 CRIT_BARCODE 类型表示已识别的条形码数据。

在 macOS 上测试 Python 条形码扫描仪

How to Build a Python Barcode Scanner for Windows, Linux, and macOS

源代码

https://github.com/yushulx/python-barcode-qrcode-sdk/tree/main/examples/official/10.x

以上是如何构建适用于 Windows、Linux 和 macOS 的 Python 条码扫描器的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Python查找文本文件的ZIPF分布如何使用Python查找文本文件的ZIPF分布Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

python中的图像过滤python中的图像过滤Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Python中的平行和并发编程简介Python中的平行和并发编程简介Mar 03, 2025 am 10:32 AM

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

如何在Python中实现自己的数据结构如何在Python中实现自己的数据结构Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

python对象的序列化和避难所化:第1部分python对象的序列化和避难所化:第1部分Mar 08, 2025 am 09:39 AM

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python中的数学模块:统计Python中的数学模块:统计Mar 09, 2025 am 11:40 AM

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器