在 NumPy 数组中组合异构数据类型
在 NumPy 中,经常会遇到需要组合包含不同数据类型的不同数组的情况合并。虽然连接数组提供了一种简单的解决方案,但它通常会导致整个数组转换为第一个数组的数据类型,从而导致潜在的内存效率低下。
要解决这一挑战,请考虑以下方法:
记录数组:
记录数组提供了一种通用方法,可以在单个数组中存储异构数据类型,而不会影响其内存效率。它们采用类似表格的结构,其中每一列代表一个具有相应数据类型的字段。例如,要将字符串数组 (A) 与整数数组 (B) 组合起来,您可以创建一个记录数组,如下所示:
<code class="python">records = numpy.rec.fromarrays((A, B), names=('keys', 'data'))</code>
记录数组现在由两个字段组成:keys (字符串)和数据(整数)。您可以使用属性访问单独访问这些字段,例如记录['keys']和记录['data']。
结构化数组:
结构化数组,与记录数组类似,提供一种为数组定义自定义数据类型的方法。他们不使用属性访问,而是使用索引来访问不同的字段。要创建结构化数组:
<code class="python">arr = numpy.array([('a', 0), ('b', 1)], dtype=([('keys', '|S1'), ('data', 'i8')]))</code>
dtype 参数指定元组的元组,其中每个元组定义字段名称和数据类型。生成的数组 arr 具有可通过索引访问的字段键(字符串)和数据(整数),例如 arr['keys'] 和 arr['data']。
注意:
结构化数组不提供像记录数组那样的属性访问。然而,由于它们的直接索引方法,它们对于某些操作来说可以更有效。此外,记录数组和结构化数组都支持切片、屏蔽和广播等操作,为数据操作提供了灵活性。
以上是如何在 NumPy 数组中组合不同数据类型而不损失内存效率?的详细内容。更多信息请关注PHP中文网其他相关文章!

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通过多种方法连接列表并管理重复元素:1)使用 运算符或extend()方法可以保留所有重复元素;2)转换为集合再转回列表可以去除所有重复元素,但会丢失原有顺序;3)使用循环或列表推导式结合集合可以去除重复元素并保持原有顺序。

fasteStmethodMethodMethodConcatenationInpythondependersonListsize:1)forsmalllists,operatorseffited.2)forlargerlists,list.extend.extend()orlistComprechensionfaster,withextendEffaster,withExtendEffers,withextend()withextend()是extextend()asmoremory-ememory-emmoremory-emmoremory-emmodifyinginglistsin-place-place-place。

toInSerteLementIntoApythonList,useAppend()toaddtotheend,insert()foreSpificPosition,andextend()formultiplelements.1)useappend()foraddingsingleitemstotheend.2)useAddingsingLeitemStotheend.2)useeapecificindex,toadapecificindex,toadaSpecificIndex,toadaSpecificIndex,blyit'ssssssslorist.3 toaddextext.3

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

记事本++7.3.1
好用且免费的代码编辑器