搜索
首页后端开发Python教程如何使用 (n-1) 维数组访问多维数组?

How to Access Multidimensional Arrays with (n-1)-Dimensional Arrays?

使用 (n-1) 维数组访问多维数组:综合指南

在多维数组领域,出现了一个诱人的问题挑战:沿特定维度使用 (n-1) 维数组访问 n 维数组。这个难题吸引了众多数据科学家和程序员。

问题:剖析多维数组

设想一个 3 维数组 a,充满分布的数值跨越它的三个轴。现在,假设我们坚定不移地想要沿着给定维度提取最大值,比如第一个维度。我们如何使用 (n-1) 维数组 idx 来实现此目的,该数组保存沿该维度的最大值的索引?

解决方案 1:释放高级索引的力量

利用高级索引的力量,我们可以想出一个解决方案来解决我们的困境。通过利用 numpy 的网格函数,我们可以巧妙地生成跨越 a 的每个维度形状的坐标,除了我们要索引的维度。此操作使我们能够访问 a 的最大值,就像通过 a.max(axis=0) 提取一样。

<code class="python">m, n = a.shape[1:]
I, J = np.ogrid[:m, :n]
a_max_values = a[idx, I, J]</code>

解决方案 2:大众通用方法

对于那些寻求更通用解决方案的人,我们引入了 argmax_to_max。这个巧妙的函数使我们能够毫不费力地从 argmax 和 arr 复制 arr.max(axis) 的行为。其优雅的设计以其复杂的机制简化了索引处理任务。

<code class="python">def argmax_to_max(arr, argmax, axis):
    new_shape = list(arr.shape)
    del new_shape[axis]

    grid = np.ogrid[tuple(map(slice, new_shape))]
    grid.insert(axis, argmax)

    return arr[tuple(grid)]</code>

索引多维数组:揭开微妙之处

除了提取最大值之外,还可以访问多维数组(n-1) 维数组提出了另一个有趣的挑战。通过将数组形状分解为 (n-1) 维网格,all_idx 有助于无缝检索索引指定的元素值。

<code class="python">def all_idx(idx, axis):
    grid = np.ogrid[tuple(map(slice, idx.shape))]
    grid.insert(axis, idx)
    return tuple(grid)</code>

有了这些索引修饰技术,您现在就拥有了在数据整理冒险中克服使用 (n-1) 维数组访问多维数组的挑战。愿它给你带来胜利和启迪!

以上是如何使用 (n-1) 维数组访问多维数组?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python是否列表动态阵列或引擎盖下的链接列表?Python是否列表动态阵列或引擎盖下的链接列表?May 07, 2025 am 12:16 AM

pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)他们areStoredIncoNtiguulMemoryBlocks,mayrequireRealLealLocationWhenAppendingItems,EmpactingPerformance.2)LinkesedlistSwoldOfferefeRefeRefeRefeRefficeInsertions/DeletionsButslowerIndexeDexedAccess,Lestpypytypypytypypytypy

如何从python列表中删除元素?如何从python列表中删除元素?May 07, 2025 am 12:15 AM

pythonoffersFourmainMethodStoreMoveElement Fromalist:1)删除(值)emovesthefirstoccurrenceofavalue,2)pop(index)emovesanderturnsanelementataSpecifiedIndex,3)delstatementremoveselemsbybybyselementbybyindexorslicebybyindexorslice,and 4)

试图运行脚本时,应该检查是否会遇到'权限拒绝”错误?试图运行脚本时,应该检查是否会遇到'权限拒绝”错误?May 07, 2025 am 12:12 AM

toresolvea“ dermissionded”错误Whenrunningascript,跟随台词:1)CheckAndAdjustTheScript'Spermissions ofchmod xmyscript.shtomakeitexecutable.2)nesureThEseRethEserethescriptistriptocriptibationalocatiforecationAdirectorywherewhereyOuhaveWritePerMissionsyOuhaveWritePermissionsyYouHaveWritePermissions,susteSyAsyOURHomeRecretectory。

与Python的图像处理中如何使用阵列?与Python的图像处理中如何使用阵列?May 07, 2025 am 12:04 AM

ArraysarecrucialinPythonimageprocessingastheyenableefficientmanipulationandanalysisofimagedata.1)ImagesareconvertedtoNumPyarrays,withgrayscaleimagesas2Darraysandcolorimagesas3Darrays.2)Arraysallowforvectorizedoperations,enablingfastadjustmentslikebri

对于哪些类型的操作,阵列比列表要快得多?对于哪些类型的操作,阵列比列表要快得多?May 07, 2025 am 12:01 AM

ArraySaresificatificallyfasterthanlistsForoperationsBenefiting fromDirectMemoryAcccccccCesandFixed-Sizestructures.1)conscessingElements:arraysprovideconstant-timeaccessduetocontoconcotigunmorystorage.2)iteration:araysleveragececacelocality.3)

说明列表和数组之间元素操作的性能差异。说明列表和数组之间元素操作的性能差异。May 06, 2025 am 12:15 AM

ArraySareBetterForlement-WiseOperationsDuetofasterAccessCessCessCessCessCessAndOptimizedImplementations.1)ArrayshaveContiguucuulmemoryfordirectAccesscess.2)列出sareflexible butslible dueTopotentEnallymideNamicizing.3)forlarargedAtaTasetsetsetsetsetsetsetsetsetsetsetlib

如何有效地对整个Numpy阵列进行数学操作?如何有效地对整个Numpy阵列进行数学操作?May 06, 2025 am 12:15 AM

在NumPy中进行整个数组的数学运算可以通过向量化操作高效实现。 1)使用简单运算符如加法(arr 2)可对数组进行运算。 2)NumPy使用C语言底层库,提升了运算速度。 3)可以进行乘法、除法、指数等复杂运算。 4)需注意广播操作,确保数组形状兼容。 5)使用NumPy函数如np.sum()能显着提高性能。

您如何将元素插入python数组中?您如何将元素插入python数组中?May 06, 2025 am 12:14 AM

在Python中,向列表插入元素有两种主要方法:1)使用insert(index,value)方法,可以在指定索引处插入元素,但在大列表开头插入效率低;2)使用append(value)方法,在列表末尾添加元素,效率高。对于大列表,建议使用append()或考虑使用deque或NumPy数组来优化性能。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。