搜索
首页后端开发Python教程Keras:通过详细示例了解基础知识

Keras: Understanding the Basics with a Detailed Example

开发者们大家好,

如果您是深度学习新手,您可能遇到过 Keras 这个名字。但它到底是什么?它是如何工作的?在这篇文章中,我将从头开始解释所有内容,并向您展示一个使用 Keras 构建简单深度学习模型的分步示例。我还将解释诸如 MNIST 数据集 之类的关键概念,以便您可以轻松理解!

1.什么是Keras?

Keras 是一个用 Python 编写的开源高级神经网络 API。它允许开发人员使用用户友好的界面快速轻松地构建深度学习模型。 Keras 位于 TensorFlow 等更复杂的深度学习框架之上,让您可以专注于构建模型,而不会被底层复杂性所困扰。

2. 为什么使用 Keras?

  • 易于使用:Keras 的设计易于阅读和理解,这非常适合初学者。
  • 模块化:它是高度模块化的,这意味着您可以像积木一样将模型组合在一起。
  • 多后端支持:Keras 可以在 TensorFlow、Theano 或 CNTK 之上运行,使其非常灵活。
  • 快速原型:只需几行代码即可构建、编译和训练深度学习模型。

3.什么是MNIST?

MNIST 数据集 是机器学习领域最著名的数据集之一。它包含 70,000 张手写数字 (0-9) 图像。每个图像都是灰度图片,大小为 28x28 像素。目标是将这些图像分类为十个数字类别之一。

以下是 MNIST 数据集中的一些数字示例:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

使用 Keras 时,您经常会看到教程中使用 MNIST 数据集,因为它简单、易于理解,并且非常适合测试新模型。


4. 使用 Keras 构建简单的神经网络(逐步)

现在让我们使用 Keras 构建一个简单的神经网络来对这些手写数字进行分类。我们将一步步进行。

第 1 步:安装 TensorFlow(Keras 与 TensorFlow 捆绑在一起)

首先,您需要安装 TensorFlow,因为 Keras 是最新版本中 TensorFlow 的一部分。您可以通过 pip 安装它:

pip install tensorflow

第2步:导入所需的库

我们将导入构建和训练模型所需的 TensorFlow 和 Keras 特定库。

import tensorflow as tf
from tensorflow.keras import layers, models

这里,tensorflow.keras 是 TensorFlow 中的 Keras API。

步骤 3:加载 MNIST 数据集

Keras 提供了对 MNIST 等数据集的轻松访问。我们将加载数据集并将其分为训练集和测试集。

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

在此步骤中,train_images 和 train_labels 保存训练数据,而 test_images 和 test_labels 保存测试数据。

train_images中的每张图像都是28x28像素的灰度图像,train_labels包含每张图像对应的数字标签(0-9)。

步骤 4:预处理数据

接下来,我们需要对图像的像素值进行归一化,以使模型训练更加高效。图像中的每个像素值都在 0 到 255 之间。我们将图像除以 255,将这些值缩放到 0 到 1 之间。

pip install tensorflow

第 5 步:构建模型

现在让我们使用 Keras 构建我们的神经网络。我们将创建一个顺序模型,它允许我们将层堆叠在另一个之上。

import tensorflow as tf
from tensorflow.keras import layers, models
  • Flatten:Flatten 层将 28x28 2D 图像转换为 784 个值的 1D 数组。
  • Dense:Dense 层是全连接层。这里我们的隐藏层有 128 个神经元,输出层有 10 个神经元(因为我们有 10 个数字类)。我们使用 ReLU 作为隐藏层的激活函数,使用 softmax 作为输出层。

第 6 步:编译模型

接下来,我们需要编译模型。这是我们指定优化器损失函数评估指标
的地方

# Load the MNIST dataset
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
  • Adam 优化器:这是一种用于训练深度学习模型的流行优化器。
  • 稀疏分类交叉熵:此损失函数用于像我们这样的多类分类问题。
  • 准确性:我们将使用准确性作为评估模型性能的指标。

第 7 步:训练模型

现在,我们准备好训练模型了!我们将对其进行 5 epochs 训练(即模型将遍历整个训练数据集 5 次)。

# Normalize pixel values to be between 0 and 1
train_images = train_images / 255.0
test_images = test_images / 255.0

第 8 步:评估模型

模型训练完成后,我们可以评估其在测试数据上的性能。

# Build the model
model = models.Sequential([
    layers.Flatten(input_shape=(28, 28)),      # Flatten the 28x28 images into a 1D vector of 784 pixels
    layers.Dense(128, activation='relu'),      # Add a fully-connected (Dense) layer with 128 neurons
    layers.Dense(10, activation='softmax')     # Output layer with 10 neurons (one for each digit 0-9)
])

这将为我们提供模型在测试数据集上的准确性。


5. 幕后发生了什么?

简单来说:

  1. 数据预处理:我们对数据进行归一化,使训练更加高效。
  2. 模型定义:我们使用顺序 API 构建了一个简单的前馈神经网络。
  3. 编译:我们选择了正确的损失函数和优化器来指导模型的学习。
  4. 训练:模型学会了通过多次遍历数据集将图像映射到数字。
  5. 评估:最后,我们检查了模型对未见过的数据的泛化程度。

6. 下一步该何去何从?

Keras 简化了构建和训练神经网络的过程,使其成为初学者的理想起点。一旦您熟悉了基本模型,您就可以尝试更复杂的架构,例如卷积神经网络(CNN)循环神经网络(RNN)

随意使用 Keras 深入探索深度学习的世界,尝试不同的模型,并突破可能的界限!


到目前为止,您对 Keras 有何看法?

以上是Keras:通过详细示例了解基础知识的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Python查找文本文件的ZIPF分布如何使用Python查找文本文件的ZIPF分布Mar 05, 2025 am 09:58 AM

本教程演示如何使用Python处理Zipf定律这一统计概念,并展示Python在处理该定律时读取和排序大型文本文件的效率。 您可能想知道Zipf分布这个术语是什么意思。要理解这个术语,我们首先需要定义Zipf定律。别担心,我会尽量简化说明。 Zipf定律 Zipf定律简单来说就是:在一个大型自然语言语料库中,最频繁出现的词的出现频率大约是第二频繁词的两倍,是第三频繁词的三倍,是第四频繁词的四倍,以此类推。 让我们来看一个例子。如果您查看美国英语的Brown语料库,您会注意到最频繁出现的词是“th

我如何使用美丽的汤来解析HTML?我如何使用美丽的汤来解析HTML?Mar 10, 2025 pm 06:54 PM

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

python中的图像过滤python中的图像过滤Mar 03, 2025 am 09:44 AM

处理嘈杂的图像是一个常见的问题,尤其是手机或低分辨率摄像头照片。 本教程使用OpenCV探索Python中的图像过滤技术来解决此问题。 图像过滤:功能强大的工具 图像过滤器

如何使用TensorFlow或Pytorch进行深度学习?如何使用TensorFlow或Pytorch进行深度学习?Mar 10, 2025 pm 06:52 PM

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

Python中的平行和并发编程简介Python中的平行和并发编程简介Mar 03, 2025 am 10:32 AM

Python是数据科学和处理的最爱,为高性能计算提供了丰富的生态系统。但是,Python中的并行编程提出了独特的挑战。本教程探讨了这些挑战,重点是全球解释

如何在Python中实现自己的数据结构如何在Python中实现自己的数据结构Mar 03, 2025 am 09:28 AM

本教程演示了在Python 3中创建自定义管道数据结构,利用类和操作员超载以增强功能。 管道的灵活性在于它能够将一系列函数应用于数据集的能力,GE

python对象的序列化和避难所化:第1部分python对象的序列化和避难所化:第1部分Mar 08, 2025 am 09:39 AM

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

Python中的数学模块:统计Python中的数学模块:统计Mar 09, 2025 am 11:40 AM

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)