Pandas GroupBy 和组内排序
考虑这样一种情况,您有一个包含多列的 DataFrame,并且您希望按两列对行进行分组。分组后,您可能需要对每个组内的聚合结果进行进一步排序,例如按计数列降序排序。以下是实现这一目标的方法:
要按多列对数据进行分组,然后在组内进行排序,可以组合使用 groupby() 和 sort_values() 函数。例如,假设您有一个包含列计数、作业和源的 DataFrame。
<code class="python">import pandas as pd df = pd.DataFrame({'count': [2, 4, 6, 3, 7, 5, 3, 2, 4, 1], 'job': ['sales','sales','sales','sales','sales', 'market','market','market','market','market'], 'source': ['A','B','C','D','E','A','B','C','D','E']})</code>
要获取每个作业和源组合的总数,您可以执行以下操作:
<code class="python">df.groupby(['job','source']).agg({'count':sum})</code>
接下来,要在每个组中按降序对计数列进行排序并仅取前三行,您可以执行以下操作:
<code class="python">result = df.sort_values(['job','count'],ascending=False).groupby('job').head(3)</code>
这将返回一个包含前三行的 DataFrame每个作业组,按计数列降序排序。生成的 DataFrame 可能如下所示:
<code class="python">print(result) count job source 4 7 sales E 2 6 sales C 1 4 sales B 5 5 market A 8 4 market D 6 3 market B</code>
以上是如何使用 Pandas GroupBy 对数据进行分组并在组内排序?的详细内容。更多信息请关注PHP中文网其他相关文章!

ForhandlinglargedatasetsinPython,useNumPyarraysforbetterperformance.1)NumPyarraysarememory-efficientandfasterfornumericaloperations.2)Avoidunnecessarytypeconversions.3)Leveragevectorizationforreducedtimecomplexity.4)Managememoryusagewithefficientdata

Inpython,ListSusedynamicMemoryAllocationWithOver-Asalose,而alenumpyArraySallaySallocateFixedMemory.1)listssallocatemoremoremoremorythanneededinentientary上,respizeTized.2)numpyarsallaysallaysallocateAllocateAllocateAlcocateExactMemoryForements,OfferingPrediCtableSageButlessemageButlesseflextlessibility。

Inpython,YouCansspecthedatatAtatatPeyFelemereModeRernSpant.1)Usenpynernrump.1)Usenpynyp.dloatp.dloatp.ploatm64,formor professisconsiscontrolatatypes。

NumPyisessentialfornumericalcomputinginPythonduetoitsspeed,memoryefficiency,andcomprehensivemathematicalfunctions.1)It'sfastbecauseitperformsoperationsinC.2)NumPyarraysaremorememory-efficientthanPythonlists.3)Itoffersawiderangeofmathematicaloperation

Contiguousmemoryallocationiscrucialforarraysbecauseitallowsforefficientandfastelementaccess.1)Itenablesconstanttimeaccess,O(1),duetodirectaddresscalculation.2)Itimprovescacheefficiencybyallowingmultipleelementfetchespercacheline.3)Itsimplifiesmemorym

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

numpyallowsforvariousoperationsonArrays:1)basicarithmeticlikeaddition,减法,乘法和division; 2)evationAperationssuchasmatrixmultiplication; 3)element-wiseOperations wiseOperationswithOutexpliitloops; 4)

Arresinpython,尤其是Throughnumpyandpandas,weessentialFordataAnalysis,offeringSpeedAndeffied.1)NumpyArseNable efflaysenable efficefliceHandlingAtaSetSetSetSetSetSetSetSetSetSetSetsetSetSetSetSetsopplexoperationslikemovingaverages.2)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Dreamweaver CS6
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境