提高 FastAPI 中大数据 JSON 响应的性能
FastAPI 用户在通过端点返回大量 JSON 数据时遇到严重延迟。全面的解决方案涉及解决多个因素,包括数据检索、序列化和客户端显示。
数据提取和读取
如示例代码中突出显示的,数据最初使用 Pandas 的 read_parquet() 函数从 Parquet 文件中提取数据,该函数将数据转换为 Pandas DataFrame。为了提高效率,请考虑使用专门为处理大型数据集而设计的替代库,例如 Dask。 Dask 的 read_parquet() 方法可以显着提高数据读取速度。
JSON 序列化
随后的 JSON 序列化步骤被证明是主要的性能瓶颈。默认情况下,FastAPI 使用 Python 的标准 json.dumps() 函数,导致性能不佳。为了加速此过程,可以使用 orjson 或 ujson 等替代 JSON 编码器,从而大大减少序列化时间。
响应类型优化
在某些情况下,返回 Pandas DataFrame由于 DataFrame 和 JSON 输出的 RAM 分配,JSON 响应可能会导致内存问题。为了解决这个问题,请考虑使用 df.to_json() 而不指定文件路径,它将 JSON 输出直接流式传输到客户端,而不将其存储在内存中。
客户端显示
即使使用优化的序列化技术,在客户端浏览器上显示大量数据也会因数据解析和渲染而引入额外的延迟。为了缓解这种情况,请探索诸如提供下载链接而不是浏览器内显示等选项,从而将数据处理卸载到客户端计算机。
通过实施这些技术,开发人员可以显着提高 FastAPI 端点返回的性能海量JSON数据,保证响应灵敏、高效的用户体验。
以上是如何优化FastAPI中大数据的JSON响应性能?的详细内容。更多信息请关注PHP中文网其他相关文章!

可以使用多种方法在Python中连接两个列表:1.使用 操作符,简单但在大列表中效率低;2.使用extend方法,效率高但会修改原列表;3.使用 =操作符,兼具效率和可读性;4.使用itertools.chain函数,内存效率高但需额外导入;5.使用列表解析,优雅但可能过于复杂。选择方法应根据代码上下文和需求。

有多种方法可以合并Python列表:1.使用 操作符,简单但对大列表不内存高效;2.使用extend方法,内存高效但会修改原列表;3.使用itertools.chain,适用于大数据集;4.使用*操作符,一行代码合并小到中型列表;5.使用numpy.concatenate,适用于大数据集和性能要求高的场景;6.使用append方法,适用于小列表但效率低。选择方法时需考虑列表大小和应用场景。

CompiledLanguagesOffersPeedAndSecurity,而interneterpretledlanguages provideeaseafuseanDoctability.1)commiledlanguageslikec arefasterandSecureButhOnderDevevelmendeclementCyclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesclesandentency.2)cransportedeplatectentysenty

Python中,for循环用于遍历可迭代对象,while循环用于条件满足时重复执行操作。1)for循环示例:遍历列表并打印元素。2)while循环示例:猜数字游戏,直到猜对为止。掌握循环原理和优化技巧可提高代码效率和可靠性。

要将列表连接成字符串,Python中使用join()方法是最佳选择。1)使用join()方法将列表元素连接成字符串,如''.join(my_list)。2)对于包含数字的列表,先用map(str,numbers)转换为字符串再连接。3)可以使用生成器表达式进行复杂格式化,如','.join(f'({fruit})'forfruitinfruits)。4)处理混合数据类型时,使用map(str,mixed_list)确保所有元素可转换为字符串。5)对于大型列表,使用''.join(large_li

pythonuseshybridapprace,ComminingCompilationTobyTecoDeAndInterpretation.1)codeiscompiledtoplatform-Indepententbybytecode.2)bytecodeisisterpretedbybythepbybythepythonvirtualmachine,增强效率和通用性。

theKeyDifferencesBetnewpython's“ for”和“ for”和“ loopsare:1)” for“ loopsareIdealForiteringSequenceSquencesSorkNowniterations,而2)”,而“ loopsareBetterforConterContinuingUntilacTientInditionIntionismetismetistismetistwithOutpredefinedInedIterations.un

在Python中,可以通过多种方法连接列表并管理重复元素:1)使用 运算符或extend()方法可以保留所有重复元素;2)转换为集合再转回列表可以去除所有重复元素,但会丢失原有顺序;3)使用循环或列表推导式结合集合可以去除重复元素并保持原有顺序。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版
SublimeText3 Linux最新版

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Dreamweaver Mac版
视觉化网页开发工具