Machine Readable Zone (MRZ) is a crucial feature adopted in modern passports, visas, and ID cards. It contains essential information about the document holder, such as their name, gender, country code, and document number. MRZ recognition plays a key role in border control, airport security, and hotel check-in processes. In this tutorial, we will demonstrate how to leverage the Dynamsoft Capture Vision SDK to implement MRZ recognition across Windows, Linux, and macOS platforms. This guide will provide a step-by-step approach to harness the SDK’s powerful features, making cross-platform MRZ detection seamless and efficient.
Python MRZ Recognition Demo on macOS
Prerequisites
Dynamsoft Capture Vision Trial License: Obtain a 30-Day trial license key for the Dynamsoft Capture Vision SDK.
-
Python Packages: Install the required Python packages using the following commands:
pip install dynamsoft-capture-vision-bundle opencv-python
What are these packages for?
- dynamsoft-capture-vision-bundle is the Dynamsoft Capture Vision SDK for Python.
- opencv-python captures camera frames and displays processed image results.
Getting Started with the Dynamsoft Python Capture Vision Example
The official MRZ scanner example demonstrates how to create a simple Python-based MRZ reader using the Dynamsoft Capture Vision SDK in a short time.
Let's take a look at the source code and analyze its functionality:
import sys from dynamsoft_capture_vision_bundle import * import os class MRZResult: def __init__(self, item: ParsedResultItem): self.doc_type = item.get_code_type() self.raw_text=[] self.doc_id = None self.surname = None self.given_name = None self.nationality = None self.issuer = None self.gender = None self.date_of_birth = None self.date_of_expiry = None if self.doc_type == "MRTD_TD3_PASSPORT": if item.get_field_value("passportNumber") != None and item.get_field_validation_status("passportNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("passportNumber") elif item.get_field_value("documentNumber") != None and item.get_field_validation_status("documentNumber") != EnumValidationStatus.VS_FAILED: self.doc_id = item.get_field_value("documentNumber") line = item.get_field_value("line1") if line is not None: if item.get_field_validation_status("line1") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line2") if line is not None: if item.get_field_validation_status("line2") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) line = item.get_field_value("line3") if line is not None: if item.get_field_validation_status("line3") == EnumValidationStatus.VS_FAILED: line += ", Validation Failed" self.raw_text.append(line) if item.get_field_value("nationality") != None and item.get_field_validation_status("nationality") != EnumValidationStatus.VS_FAILED: self.nationality = item.get_field_value("nationality") if item.get_field_value("issuingState") != None and item.get_field_validation_status("issuingState") != EnumValidationStatus.VS_FAILED: self.issuer = item.get_field_value("issuingState") if item.get_field_value("dateOfBirth") != None and item.get_field_validation_status("dateOfBirth") != EnumValidationStatus.VS_FAILED: self.date_of_birth = item.get_field_value("dateOfBirth") if item.get_field_value("dateOfExpiry") != None and item.get_field_validation_status("dateOfExpiry") != EnumValidationStatus.VS_FAILED: self.date_of_expiry = item.get_field_value("dateOfExpiry") if item.get_field_value("sex") != None and item.get_field_validation_status("sex") != EnumValidationStatus.VS_FAILED: self.gender = item.get_field_value("sex") if item.get_field_value("primaryIdentifier") != None and item.get_field_validation_status("primaryIdentifier") != EnumValidationStatus.VS_FAILED: self.surname = item.get_field_value("primaryIdentifier") if item.get_field_value("secondaryIdentifier") != None and item.get_field_validation_status("secondaryIdentifier") != EnumValidationStatus.VS_FAILED: self.given_name = item.get_field_value("secondaryIdentifier") def to_string(self): msg = (f"Raw Text:\n") for index, line in enumerate(self.raw_text): msg += (f"\tLine {index + 1}: {line}\n") msg+=(f"Parsed Information:\n" f"\tDocumentType: {self.doc_type or ''}\n" f"\tDocumentID: {self.doc_id or ''}\n" f"\tSurname: {self.surname or ''}\n" f"\tGivenName: {self.given_name or ''}\n" f"\tNationality: {self.nationality or ''}\n" f"\tIssuingCountryorOrganization: {self.issuer or ''}\n" f"\tGender: {self.gender or ''}\n" f"\tDateofBirth(YYMMDD): {self.date_of_birth or ''}\n" f"\tExpirationDate(YYMMDD): {self.date_of_expiry or ''}\n") return msg def print_results(result: ParsedResult) -> None: tag = result.get_original_image_tag() if isinstance(tag, FileImageTag): print("File:", tag.get_file_path()) if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_string()) else: items = result.get_items() print("Parsed", len(items), "MRZ Zones.") for item in items: mrz_result = MRZResult(item) print(mrz_result.to_string()) if __name__ == '__main__': print("**********************************************************") print("Welcome to Dynamsoft Capture Vision - MRZ Sample") print("**********************************************************") error_code, error_message = LicenseManager.init_license("LICENSE-KEY") if error_code != EnumErrorCode.EC_OK and error_code != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", error_code, ", ErrorString:", error_message) else: cvr_instance = CaptureVisionRouter() while (True): image_path = input( ">> Input your image full path:\n" ">> 'Enter' for sample image or 'Q'/'q' to quit\n" ).strip('\'"') if image_path.lower() == "q": sys.exit(0) if image_path == "": image_path = "../Images/passport-sample.jpg" if not os.path.exists(image_path): print("The image path does not exist.") continue result = cvr_instance.capture(image_path, "ReadPassportAndId") if result.get_error_code() != EnumErrorCode.EC_OK: print("Error:", result.get_error_code(), result.get_error_string()) else: parsed_result = result.get_parsed_result() if parsed_result is None or len(parsed_result.get_items()) == 0: print("No parsed results.") else: print_results(parsed_result) input("Press Enter to quit...")
Explanation
- The LicenseManager.init_license method initializes the Dynamsoft Capture Vision SDK with a valid license key.
- The CaptureVisionRouter class manages image processing tasks and coordinates various image processing modules. Its capture method processes the input image and returns the result.
- The ReadPassportAndId is a built-in template specifying the processing mode. The SDK supports various processing modes, such as MRZ recognition, document edge detection, and barcode detection.
- The get_parsed_result method retrieves the MRZ recognition result as a dictionary. The MRZResult class extracts and wraps the relevant MRZ information. Since this class can be reused across different applications, it is recommended to move it to a utils.py file.
In the next section, we will use OpenCV to visualize the MRZ recognition results and display the detected MRZ zones on the passport image.
Visualizing Machine Readable Zone Location in a Passport Image
In the code above, result is an instance of the CapturedResult class. Calling its get_recognized_text_lines_result() method retrieves a list of TextLineResultItem objects. Each TextLineResultItem object contains the coordinates of the detected text line. Use the following code snippet to extract the coordinates and draw contours on the passport image:
cv_image = cv2.imread(image_path) line_result = result.get_recognized_text_lines_result() items = line_result.get_items() for item in items: location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y del location cv2.drawContours( cv_image, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) cv2.imshow( "Original Image with Detected MRZ Zone", cv_image) cv2.waitKey(0) cv2.destroyAllWindows()
Scanning and Recognizing MRZ in Real-time via Webcam
Scanning and recognizing MRZ in real-time via webcam requires capturing a continuous image stream. We can use the OpenCV library to capture frames from the webcam and process them with the Dynamsoft Capture Vision SDK. The following code snippet demonstrates how to implement real-time MRZ recognition using a webcam:
from dynamsoft_capture_vision_bundle import * import cv2 import numpy as np import queue from utils import * class FrameFetcher(ImageSourceAdapter): def has_next_image_to_fetch(self) -> bool: return True def add_frame(self, imageData): self.add_image_to_buffer(imageData) class MyCapturedResultReceiver(CapturedResultReceiver): def __init__(self, result_queue): super().__init__() self.result_queue = result_queue def on_captured_result_received(self, captured_result): self.result_queue.put(captured_result) if __name__ == '__main__': errorCode, errorMsg = LicenseManager.init_license( "LICENSE-KEY") if errorCode != EnumErrorCode.EC_OK and errorCode != EnumErrorCode.EC_LICENSE_CACHE_USED: print("License initialization failed: ErrorCode:", errorCode, ", ErrorString:", errorMsg) else: vc = cv2.VideoCapture(0) if not vc.isOpened(): print("Error: Camera is not opened!") exit(1) cvr = CaptureVisionRouter() fetcher = FrameFetcher() cvr.set_input(fetcher) # Create a thread-safe queue to store captured items result_queue = queue.Queue() receiver = MyCapturedResultReceiver(result_queue) cvr.add_result_receiver(receiver) errorCode, errorMsg = cvr.start_capturing("ReadPassportAndId") if errorCode != EnumErrorCode.EC_OK: print("error:", errorMsg) while True: ret, frame = vc.read() if not ret: print("Error: Cannot read frame!") break fetcher.add_frame(convertMat2ImageData(frame)) if not result_queue.empty(): captured_result = result_queue.get_nowait() items = captured_result.get_items() for item in items: if item.get_type() == EnumCapturedResultItemType.CRIT_TEXT_LINE: text = item.get_text() line_results = text.split('\n') location = item.get_location() x1 = location.points[0].x y1 = location.points[0].y x2 = location.points[1].x y2 = location.points[1].y x3 = location.points[2].x y3 = location.points[2].y x4 = location.points[3].x y4 = location.points[3].y cv2.drawContours( frame, [np.intp([(x1, y1), (x2, y2), (x3, y3), (x4, y4)])], 0, (0, 255, 0), 2) delta = y3 - y1 for line_result in line_results: cv2.putText( frame, line_result, (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 1, cv2.LINE_AA) y1 += delta del location elif item.get_type() == EnumCapturedResultItemType.CRIT_PARSED_RESULT: mrz_result = MRZResult(item) print(mrz_result.to_string()) if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.imshow('frame', frame) cvr.stop_capturing() vc.release() cv2.destroyAllWindows()
Explanation
- The FrameFetcher class implements the ImageSourceAdapter interface to feed frame data into the built-in buffer.
- The MyCapturedResultReceiver class implements the CapturedResultReceiver interface. The on_captured_result_received method runs on a native C++ worker thread, sending CapturedResult objects to the main thread where they are stored in a thread-safe queue for further use.
- A CapturedResult contains several CapturedResultItem objects. The CRIT_TEXT_LINE type represents recognized text lines, while the CRIT_PARSED_RESULT type represents parsed MRZ data.
Running the Real-time MRZ Recognition Demo on Windows
Source Code
https://github.com/yushulx/python-mrz-scanner-sdk/tree/main/examples/official
以上是如何在Python中实现机器可读区(MRZ)识别的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1
功能强大的PHP集成开发环境

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver Mac版
视觉化网页开发工具