搜索
首页后端开发Python教程FastAPI 中的缓存:解锁高性能开发:

In today’s digital world, every action—whether it’s swiping on a dating app or completing a purchase—relies on APIs working efficiently behind the scenes. As back-end developers, we know that every millisecond counts. But how can we make APIs respond faster? The answer lies in caching.

Caching is a technique that stores frequently accessed data in memory, allowing APIs to respond instantly instead of querying a slower database every time. Think of it like keeping key ingredients (salt, pepper, oil) on your kitchen countertop instead of fetching them from the pantry each time you cook—this saves time and makes the process more efficient. Similarly, caching reduces API response times by storing commonly requested data in a fast, accessible spot, like Redis.

Required Libraries to be installed

To connect with Redis Cache with FastAPI, we require the following libraries to be pre-installed.

pip install fastapi uvicorn aiocache pydantic

Pydantic is for creating database tables and structures. aiocache will perform asynchronous operations on Cache. uvicorn is responsible for the server running.

Redis Setup and Verification:

Setting up Redis directly in a Windows system is not possible at this juncture. Therefore, it has to be setup and run in Windows Subsystem for Linux. Instructions for installing WSL is given below

Caching in FastAPI: Unlocking High-Performance Development:

Install WSL | Microsoft Learn

Install Windows Subsystem for Linux with the command, wsl --install. Use a Bash terminal on your Windows machine run by your preferred Linux distribution - Ubuntu, Debian, SUSE, Kali, Fedora, Pengwin, Alpine, and more are available.

learn.microsoft.com

Post installing WSL, the following commands are required to install Redis

sudo apt update
sudo apt install redis-server
sudo systemctl start redis

To test Redis server connectivity, the following command is used

redis-cli

After this command, it will enter into a virtual terminal of port 6379. In that terminal, the redis commands can be typed and tested.

Setting Up the FastAPI Application

Let’s create a simple FastAPI app that retrieves user information and caches it for future requests. We will use Redis for storing cached responses.

Step 1: Define the Pydantic Model for User Data

We’ll use Pydantic to define our User model, which represents the structure of the API response.

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str
    age: int

Step 2: Create a Caching Decorator

To avoid repeating the caching logic for each endpoint, we’ll create a reusable caching decorator using the aiocache library. This decorator will attempt to retrieve the response from Redis before calling the actual function.

import json
from functools import wraps
from aiocache import Cache
from fastapi import HTTPException

def cache_response(ttl: int = 60, namespace: str = "main"):
    """
    Caching decorator for FastAPI endpoints.

    ttl: Time to live for the cache in seconds.
    namespace: Namespace for cache keys in Redis.
    """
    def decorator(func):
        @wraps(func)
        async def wrapper(*args, **kwargs):
            user_id = kwargs.get('user_id') or args[0]  # Assuming the user ID is the first argument
            cache_key = f"{namespace}:user:{user_id}"

            cache = Cache.REDIS(endpoint="localhost", port=6379, namespace=namespace)

            # Try to retrieve data from cache
            cached_value = await cache.get(cache_key)
            if cached_value:
                return json.loads(cached_value)  # Return cached data

            # Call the actual function if cache is not hit
            response = await func(*args, **kwargs)

            try:
                # Store the response in Redis with a TTL
                await cache.set(cache_key, json.dumps(response), ttl=ttl)
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error caching data: {e}")

            return response
        return wrapper
    return decorator

Step 3: Implement a FastAPI Route for User Details

We’ll now implement a FastAPI route that retrieves user information based on a user ID. The response will be cached using Redis for faster access in subsequent requests.

from fastapi import FastAPI

app = FastAPI()

# Sample data representing users in a database
users_db = {
    1: {"id": 1, "name": "Alice", "email": "alice@example.com", "age": 25},
    2: {"id": 2, "name": "Bob", "email": "bob@example.com", "age": 30},
    3: {"id": 3, "name": "Charlie", "email": "charlie@example.com", "age": 22},
}

@app.get("/users/{user_id}")
@cache_response(ttl=120, namespace="users")
async def get_user_details(user_id: int):
    # Simulate a database call by retrieving data from users_db
    user = users_db.get(user_id)
    if not user:
        raise HTTPException(status_code=404, detail="User not found")

    return user

Step 4: Run the Application

Start your FastAPI application by running:

uvicorn main:app --reload

Now, you can test the API by fetching user details via:

http://127.0.0.1:8000/users/1

The first request will fetch the data from the users_db, but subsequent requests will retrieve the data from Redis.

Testing the Cache

You can verify the cache by inspecting the keys stored in Redis. Open the Redis CLI:

redis-cli
KEYS *

You will get all keys that have been stored in the Redis till TTL.

How Caching Works in This Example

First Request

: When the user data is requested for the first time, the API fetches it from the database (users_db) and stores the result in Redis with a time-to-live (TTL) of 120 seconds.

Subsequent Requests:

Any subsequent requests for the same user within the TTL period are served directly from Redis, making the response faster and reducing the load on the database.

TTL (Time to Live):

After 120 seconds, the cache entry expires, and the data is fetched from the database again on the next request, refreshing the cache.

Conclusion

In this tutorial, we’ve demonstrated how to implement Redis caching in a FastAPI application using a simple user details example. By caching API responses, you can significantly improve the performance of your application, particularly for data that doesn't change frequently.

Please do upvote and share if you find this article useful.

以上是FastAPI 中的缓存:解锁高性能开发:的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!