搜索
首页后端开发Python教程PythonGIL 中的自由线程模式已禁用)

Python 3.13 最近刚刚发布,具有一个令人惊叹的新功能,称为“自由线程模式”。当您使用线程时,这对于代码的性能来说是一个很大的改进。本文展示了如何启用此功能(默认情况下不启用)并展示“自由线程模式”对代码性能的影响。

安装免费线程Python

Windows 和 MacOS 用户

对于 Windows 和 MacOS 用户,只需从 Python 网站下载最新的安装程序即可。当您安装Python时,当您选择“自定义安装”选项时,会有一个启用“自由线程模式”的复选框。

Free Threaded Mode in PythonGIL disabled)

Ubuntu 用户

对于 Ubuntu 用户,您可以通过在终端中运行以下命令来启用此功能:

sudo add-apt-repository ppa:deadsnakes
sudo apt-get update
sudo apt-get install python3.13-nogil

验证自由线程模式已启用

安装包后,您可以使用 python3.13(原始)和 python3.13-nogil 或 python3.13t(免费线程 Python)运行代码。

查看这篇文章,了解有关如何在 Linux 发行版上安装 Python 3.13 实验版的更多详细信息。

要验证您的 Python 是否启用了“自由线程模式”,您可以使用以下命令:

python3.13t -VV
Python 3.13.0 experimental free-threading build (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]

自由线程模式性能

实验设置

让我们看看自由线程模式对下面简单代码的影响:

  • 我有一个函数工作者,它执行一些计算并返回 0 到 1000 万之间的数字总和。
  • 我有“测试 1”来按顺序运行工作函数 5 次。
  • 我有“测试 2”来使用多个线程并行运行工作函数,线程数为 5。
  • 我确实测量了这两个测试的执行时间。
import sys
import threading
import time

print("Python version : ", sys.version)

def worker():
    sum = 0
    for i in range(10000000):
        sum += i


n_worker = 5
# Single thread

start = time.perf_counter()
for i in range(n_worker):
    worker()
print("Single Thread: ", time.perf_counter() - start, "seconds")


# Multi thread
start = time.perf_counter()
threads = []
for i in range(n_worker):
    t = threading.Thread(target=worker)

    threads.append(t)
    t.start()

for t in threads:
    t.join()
print("Multi Thread: ", time.perf_counter() - start, "seconds")

稍后,我将使用普通 Python(python3.13 二进制文件)和免费线程 Python(pypy3.13t 二进制文件)运行此代码。

结果

首先,使用python3.13运行测试:

python3.13 gil_test.py 
Python version :  3.13.0 (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Single Thread:  1.4370562601834536 seconds
Multi Thread:  1.3681392602156848 seconds

然后,使用 pypy3.13t 运行测试:

python3.13t gil_test.py 
Python version :  3.13.0 experimental free-threading build (main, Oct  8 2024, 08:51:28) [GCC 11.4.0]
Single Thread:  1.862126287072897 seconds
Multi Thread:  0.3931183419190347 seconds

我也尝试使用 python3.11:

python3.11 gil_test.py 
Python version :  3.11.3 (main, Apr 25 2023, 16:40:23) [GCC 11.3.0]
Single Thread:  1.753435204969719 seconds
Multi Thread:  1.457715731114149 seconds

结果分析

Python默认有GIL(Global Interpreter Lock)锁定机制,使得多线程实际上并不是并行的。可以看到单线程的时间处理和多线程类似。

使用python3.11t(自由线程模式),多线程性能比单线程快很多。所以,多线程现在实际上是并行的。

但是,你有没有发现 python3.13t 中的单线程测试比 pypy3.13 慢一点?

我不太明白为什么,所以如果你有任何解释请告诉我。

结论

我认为在python中使用多线程进行并行处理是很好的。但是,如果没有GIL锁定机制,则需要开发人员注意“线程安全”,即。在线程之间共享数据。

此外,我们需要等待库和包更新才能完全支持自由线程模式。这就是为什么现在默认情况下不启用“自由线程模式”的原因之一。但是,我认为这将是未来的一个很好的功能。

以上是PythonGIL 中的自由线程模式已禁用)的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

Python执行,那是什么?Python执行,那是什么?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:关键功能是什么Python:关键功能是什么May 14, 2025 am 12:02 AM

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。