In the previous post in this series on implementing malloc() and free(), we showed how it is possible to reuse memory blocks and reduce the heap by freeing newer blocks. However, the current function introduces a subtle issue: it prioritizes reusing newer blocks, which can lead to increased memory consumption over time. Why does this happen? Let’s break it down.
Heap reduction by reusing recent blocks
Consider the following scenario. First, we allocate four memory blocks:
void *ptr1 = abmalloc(8); void *ptr2 = abmalloc(8); void *ptr3 = abmalloc(8); void *ptr4 = abmalloc(8);
The memory structure can be visualized like this:
Now, we release the first and third blocks…
abfree(ptr1); abfree(ptr3);
…resulting in the following structure:
Then we allocate another block of the same size:
void *ptr5 = abmalloc(8);
As the function abmalloc() starts searching for the most recent free block, it reuses the block at the top. If we now free the last block:
If we now release the last block…
abfree(ptr4);
…we can reduce the heap size by just one 8-byte block, since the previous block is no longer free:
Reuse of old blocks
Now, imagine the same scenario, but with one modification: our function starts searching for free blocks from the oldest one. The initial structure will be the same…
…and again we free the first and third memory blocks:
This time, the first block will be reused:
Now, when we free the last block, we will have two free blocks at the top, allowing us to reduce the heap by two 8-byte blocks:
This example illustrates how, by giving preference to newer blocks, we end up accumulating old unused blocks, wasting memory and leading to unnecessary heap growth. The solution is to modify the search strategy, prioritizing the reuse of older blocks.
Implementing preference for old blocks
To solve this problem, we will start by adding a pointer to the next block in the header. We will also create a global pointer to the first block, so we can start the search from it:
typedef struct Header { struct Header *previous, *next; size_t size; bool available; } Header; Header *first = NULL; Header *last = NULL;
We will create memory blocks with headers in two different situations, so let’s make a small refactoring: we will extract this logic to a helper function that allocates and initializes the header (including setting the field nextwith NULL):
Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header->previous = previous; header->next = NULL; header->size = size; header->available = false; return header; }
With this new function, we can simplify the logic within abmalloc():
void *abmalloc(size_t size) { if (size == 0) { return NULL; } Header *header = last; while (header != NULL) { if (header->available && (header->size >= size)) { header->available = false; return header + 1; } header = header->previous; } last = header_new(last, size, false); return last + 1; }
Now we have access to the first and last blocks, and given a block, we can find out the previous and next ones. We also know that when the pointer to the first block is null, no blocks have been allocated yet. So in this case, we will allocate the block immediately, and initialize both first and last:
void *abmalloc(size_t size) { if (size == 0) { return NULL; } if (first == NULL) { first = last = header_new(NULL, size, false); return first + 1; }
If firstit is no longer NULL, there are already allocated blocks, so we will start searching for a reusable block. We will continue using the variable headeras an iterator, but instead of starting with the most recent block, the search will start from the oldest:
Header *header = first;
At each iteration, we will advance to the next block in the sequence, instead of going backwards to the previous block:
while (header != NULL) { if (header->available && (header->size >= size)) { header->available = false; return header + 1; } header = header->next; }
The logic remains the same: if we find an available block of sufficient size, it is returned. Otherwise, if no reusable block is found after we traverse the list, a new block is allocated:
last = header_new(last, size, false);
Now, we need to adjust the block that was the last one (after the allocation, the second to last). It pointed to NULL, but now it should point to the new block. To do this, we set the previous block’s next field to the new last block:
last->previous->next = last; return last + 1; }
Adjustments in abfree()
The function abfree() basically maintains the same structure, but now we must handle some edge cases. When we free blocks at the top of the heap, a new block becomes the last one, as we already do in this snippet:
last = header->previous; brk(header)
Here, the pointer header references the last non-null block available on the stack. We have two possible scenarios:
- the current block has a previous block, which will become the new last block. In this case, we should set the pointer nextof this block to NULL.
- the current block does not have a previous block (i.e., it is the first and oldest block). When it is freed, the stack is empty. In this case, instead of trying to update a field of a non-existent block, we simply set it first to NULL, indicating that there are no more allocated blocks.
Here is how we implement it:
last = header->previous; if (last != NULL) { last->next = NULL; } else { first = NULL; } brk(header);
Conclusion
Our functions abmalloc() and abfree() now look like this:
typedef struct Header { struct Header *previous, *next; size_t size; bool available; } Header; Header *first = NULL; Header *last = NULL; Header *header_new(Header *previous, size_t size, bool available) { Header *header = sbrk(sizeof(Header) + size); header->previous = previous; header->next = NULL; header->size = size; header->available = false; return header; } void *abmalloc(size_t size) { if (size == 0) { return NULL; } if (first == NULL) { first = last = header_new(NULL, size, false); return first + 1; } Header *header = first; while (header != NULL) { if (header->available && (header->size >= size)) { header->available = false; return header + 1; } header = header->next; } last = header_new(last, size, false); last->previous->next = last; return last + 1; } void abfree(void *ptr) { if (ptr == NULL) { return; } Header *header = (Header*) ptr - 1; if (header == last) { while ((header->previous != NULL) && header->previous->available) { header = header->previous; } last = header->previous; if (last != NULL) { last->next = NULL; } else { first = NULL; } brk(header); } else { header->available = true; } }
This change allows us to save considerably more memory. There are, however, still problems to solve. For example, consider the following scenario: we request the allocation of a memory block of 8 bytes, and abmalloc() reuse a block of, say, 1024 bytes. There is clearly a waste.
We will see how to solve this in the next post.
以上是实现 malloc() 和 free() — 首先重用旧内存的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了C标准模板库(STL),重点关注其核心组件:容器,迭代器,算法和函子。 它详细介绍了这些如何交互以启用通用编程,提高代码效率和可读性t

本文详细介绍了c中有效的STL算法用法。 它强调了数据结构选择(向量与列表),算法复杂性分析(例如,std :: sort vs. std vs. std :: partial_sort),迭代器用法和并行执行。 常见的陷阱

本文详细介绍了C中的有效异常处理,涵盖了尝试,捕捉和投掷机制。 它强调了诸如RAII之类的最佳实践,避免了不必要的捕获块,并为强大的代码登录例外。 该文章还解决了Perf

本文讨论了使用C中的移动语义来通过避免不必要的复制来提高性能。它涵盖了使用std :: Move的实施移动构造函数和任务运算符,并确定了关键方案和陷阱以有效

C 20范围通过表现力,合成性和效率增强数据操作。它们简化了复杂的转换并集成到现有代码库中,以提高性能和可维护性。

本文讨论了C中的动态调度,其性能成本和优化策略。它突出了动态调度会影响性能并将其与静态调度进行比较的场景,强调性能和之间的权衡

文章讨论了在C中有效使用RVALUE参考,以进行移动语义,完美的转发和资源管理,重点介绍最佳实践和性能改进。(159个字符)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

禅工作室 13.0.1
功能强大的PHP集成开发环境