便利性和性能通常成反比。如果代码很容易使用,那么它的优化程度就较低。如果优化的话就不太方便了。高效的代码需要更接近实际运行的内容、运行方式的细节。
我在我们正在进行的为癌症研究运行和优化 DeepCell 细胞分割的工作中遇到了一个例子。 DeepCell AI 模型可以预测哪些像素最有可能位于细胞中。从那里,我们从最可能的像素“洪水填充”,直到到达单元格边界(低于某个阈值)。
这个过程的一部分涉及平滑预测细胞内的小间隙,这种情况可能因多种原因而发生,但在生物学上是不可能的。 (想想甜甜圈的孔,而不是细胞的多孔膜。)
空洞填充算法如下:
- 识别对象(具有相同数字 ID 的给定单元格标签的连续像素)。
- 计算这些单元的“欧拉数”,即形状表面积的度量。
- 如果欧拉数小于 1(即表面有间隙),请平滑孔洞。
这是维基百科文章中的欧拉数示例;圆(仅直线部分)的欧拉特征为零,而圆盘(“填充”圆)的值为 1。
不过,我们不是来讨论定义或计算欧拉数的。我们将讨论该库计算欧拉数的简单路径为何效率相当低。
首先要做的事情。我们通过使用 Speedscope 查看此配置文件注意到了问题:
它显示在 Regionprops 上花费了约 32 毫秒(约 15%)。这个视图是左重视图,如果我们进入时间轴视图并放大,我们会得到这个:
(请注意,我们执行此操作两次,因此此处约为 16 毫秒,其他地方约为 16 毫秒,未显示。)
这立即令人怀疑:使用 find_objects 查找对象的“有趣”部分是第一个条子,0.5 毫秒。它返回一个元组列表,而不是生成器,所以当它完成时就完成了。那么其他的东西又怎么样呢?我们正在构造 RegionProperties 对象。让我们放大其中一张。
微小的碎片(我们不会放大)是自定义的 __setattr__ 调用:RegionProperties 对象支持别名,例如,如果您设置属性 ConvexArea,它会重定向到标准属性 area_convex。即使我们没有使用它,我们仍然会使用属性转换器。
此外:我们甚至没有使用区域属性中计算的大部分属性。我们只关心欧拉数:
props = regionprops(np.squeeze(label_img.astype('int')), cache=False) for prop in props: if prop.euler_number <p>反过来,它仅使用区域属性的最基本方面:find_objects 检测到的图像区域(原始图像的切片)。</p> <p>因此,我们将代码更改为 fill_holes 代码,以简单地绕过 Regionprops 通用函数。相反,我们调用 find_objects 并将生成的图像子区域传递给 euler_number 函数(而不是 RegionProperties 对象上的方法)。</p> <p>这是拉取请求:deepcell-imaging#358 跳过 Regionprops 构建</p> <p>通过跳过中间对象,我们的 fill_holes 操作获得了不错的性能提升:</p> <div class="table-wrapper-paragraph"><table> <thead> <tr> <th>Image size</th> <th>Before</th> <th>After</th> <th>Speedup</th> </tr> </thead> <tbody> <tr> <td>260k pixels</td> <td>48ms</td> <td>40ms</td> <td>8ms (17%)</td> </tr> <tr> <td>140M pixels</td> <td>15.6s</td> <td>11.7s</td> <td>3.9s (25%)</td> </tr> </tbody> </table></div> <p>对于较大的图像,4s 约占整体运行时间的 3%——不是大部分,但也不算太差。</p>
以上是性能陷阱:通用库和辅助对象的详细内容。更多信息请关注PHP中文网其他相关文章!

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SublimeText3 Linux新版
SublimeText3 Linux最新版

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。