?想要构建和部署交互式 AI 应用程序? ??? ?????? 就在 内? ???? ?? ????
在本教程中,您将使用 LlamaIndex 创建问答引擎,使用 FastAPI 通过 HTTP 提供服务,并使用 DBOS 将其无服务器部署到云。
它基于 LlamaIndex 的 5 行启动器,只需 4 行即可使其支持云。简单、快速且可扩展!
准备
首先,为您的应用创建一个文件夹并激活虚拟环境。
python3 -m venv ai-app/.venv cd ai-app source .venv/bin/activate touch main.py
然后,安装依赖项并初始化 DBOS 配置文件。
pip install dbos llama-index dbos init --config
接下来,要运行这个应用程序,您需要一个 OpenAI 开发者帐户。在此处获取 API 密钥。将 API 密钥设置为环境变量。
export OPENAI_API_KEY=XXXXX
在 dbos-config.yaml 中声明环境变量:
env: OPENAI_API_KEY: ${OPENAI_API_KEY}
最后,让我们下载一些数据。这个应用程序使用保罗·格雷厄姆的“我的工作内容”中的文本。您可以从此链接下载文本并将其保存在应用程序文件夹的 data/paul_graham_essay.txt 下。
现在,您的应用程序文件夹结构应如下所示:
ai-app/ ├── dbos-config.yaml ├── main.py └── data/ └── paul_graham_essay.txt
加载数据并构建问答引擎
现在,让我们使用 LlamaIndex 用 5 行代码编写一个简单的 AI 应用程序。
将以下代码添加到您的 main.py 中:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(response)
该脚本加载数据并在 data/ 文件夹下的文档上构建索引,并通过查询索引生成答案。您可以运行此脚本,它应该会给您一个响应,例如:
$ python3 main.py The author worked on writing short stories and programming...
HTTP 服务
现在,让我们添加一个 FastAPI 端点以通过 HTTP 提供响应。修改你的 main.py 如下:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from fastapi import FastAPI app = FastAPI() documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() @app.get("/") def get_answer(): response = query_engine.query("What did the author do growing up?") return str(response)
现在您可以使用 fastapi run main.py 启动您的应用程序。要查看它是否正常工作,请访问以下 URL:http://localhost:8000
每次刷新浏览器窗口时,结果可能会略有不同!
托管在 DBOS 云上
要将您的应用部署到 DBOS Cloud,您只需在 main.py 中添加两行:
- 从 dbos 导入 DBOS
- DBOS(fastapi=应用程序)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from fastapi import FastAPI from dbos import DBOS app = FastAPI() DBOS(fastapi=app) documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() @app.get("/") def get_answer(): response = query_engine.query("What did the author do growing up?") return str(response)
现在,如果尚未安装 DBOS Cloud CLI(需要 Node.js):
npm i -g @dbos-inc/dbos-cloud
然后将依赖项冻结到requirements.txt并部署到DBOS Cloud:
pip freeze > requirements.txt dbos-cloud app deploy
不到一分钟,它就会打印 Access your application at
要查看您的应用程序是否正常运行,请访问
恭喜您,您已成功将您的第一个 AI 应用程序部署到 DBOS Cloud!您可以在云控制台中看到您部署的应用。
下一步
这只是您 DBOS 之旅的开始。接下来,看看 DBOS 如何使您的 AI 应用程序更具可扩展性和弹性:
- 使用持久执行来编写防崩溃工作流程。
- 使用队列优雅地管理 AI/LLM API 速率限制。
- 想要构建更复杂的应用程序吗?查看人工智能驱动的 Slackbot。
尝试一下并告诉我你的想法?
以上是在大量代码中构建和部署无服务器 OpenAI 应用程序的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器